Blue light enables genes to turn on

Jun 24, 2011 by Deborah Braconnier report
Custom-designed LED arrays and LED-coupled optical fibre devices used for blue light triggered transgene expression in mammalian cells grown subcutaneously into mice. Credit: Science/AAAS

(Medical Xpress) -- With a combination of synthetic biology and optogenetics, researchers from the Swiss Federal Institute for Technology published a paper in Science outlining their new technique which enables certain genes to be turned on simply by the switch of a light.

Optogenetics uses genetics and different optical methods to create and activate cells in living tissue with the use of light. Synthetic biology combines science and engineering to create new biological functions that are not found naturally.

Led by synthetic biologist Martin Fussenegger, the team used melanopsin which is a molecule that is found on neurons within the retina and is light sensitive. These molecules are responsible for keeping the biological clocks synchronized with day and night. When light hits these molecules, the melanopsin stimulates a molecular change that causes in influx of and an electrical pulse.

The researchers placed the melanopsin gene into embryonic , thus making them light sensitive. When exposed to blue light, these cells create an influx of calcium ions. However, instead of an electrical pulse, the light triggers a transcription factor known as NFAT that moves into the cells nuclei and bind to that are known as promoters. This binding activates certain genes within the cells.

To test their technique, researchers used and engineered cells to create a glucagon peptide when exposed to blue light. The mice were implanted under the skin with hundreds of microcapsules that held around 10 million of these engineered cells. When the mice were exposed to the blue light, they had an increase in and more regulated glucose.

While this technique is still in the early stages, there is hope that these can be used for diabetic treatment and to boost the production of biological drugs which are currently used in cancer treatments.

More research needs to be done on the potential side effects. The release of calcium into the cells triggered by the light exposure may have unintended side effects and it is this reasoning that kept the group from starting this project for some time. Currently they are looking at using the technique to manufacture pharmaceutical drugs.

Explore further: Study on pesticides in lab rat feed causes a stir

More information: A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice, Science 24 June 2011:
Vol. 332 no. 6037 pp. 1565-1568. DOI:10.1126/science.1203535

ABSTRACT
Synthetic biology has advanced the design of genetic devices that can be used to reprogram metabolic activities in mammalian cells. By functionally linking the signal transduction of melanopsin to the control circuit of the nuclear factor of activated T cells, we have designed a synthetic signaling cascade enabling light-inducible transgene expression in different cell lines grown in culture or bioreactors or implanted into mice. In animals harboring intraperitoneal hollow-fiber or subcutaneous implants containing light-inducible transgenic cells, the serum levels of the human glycoprotein secreted alkaline phosphatase could be remote-controlled with fiber optics or transdermally regulated through direct illumination. Light-controlled expression of the glucagon-like peptide 1 was able to attenuate glycemic excursions in type II diabetic mice. Synthetic light-pulse–transcription converters may have applications in therapeutics and protein expression technology.

Related Stories

Bright lights, not-so-big pupils

Dec 31, 2008

A team of Johns Hopkins neuroscientists has worked out how some newly discovered light sensors in the eye detect light and communicate with the brain. The report appears online this week in Nature.

More than meets the eye to staying awake, alert

May 13, 2010

Think twice before falling asleep alongside the glare of your computer and TV screens: exposure to dim light from ordinary room lights, computer screens and other electronic devices late at night may be interfering with our ...

An 'eye catching' vision discovery

Jul 26, 2009

Nearly all species have some ability to detect light. At least three types of cells in the retina allow us to see images or distinguish between night and day. Now, researchers at the Johns Hopkins School of ...

Scientists Uncover Inner Workings of Rare Eye Cells

Jan 27, 2005

Three years ago, Brown University researchers discovered new eye cells – indeed a parallel visual system. Now, in a report in Nature, they explain how these exotic cells harness light energy to do their chief job: setting ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

17 hours ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

21 hours ago

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

22 hours ago

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

23 hours ago

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.