Modeling the bizarre: Quantum superfluids

June 23, 2011
The time-dependent SLDA (superfluid local density approximation) provides a scalable and robust mathematical framework to study the highly nonlinear microscopic dynamics of Fermi systems. Fermionic vortex crossings and exchanges are shown as time progresses in an excited system of cold atoms in an elongated trap. The process is reminiscent of DNA recombination and indicative of the onset of quantum turbulence. The dynamics of quantum turbulence in Fermi systems may provide insight into the pinning and de-pinning vortex mechanisms in neutron stars, for example. (Science, 10 June 2011: Vol. 332 no. 6035 pp. 1288-1291 DOI: 10.1126/science.1201968).

( -- More than 100 years since superconductivity was discovered, a comprehensive description for the behavior of a broad class of fundamental physical systems that exhibit the bizarre properties of superconductivity and superfluidity has been developed. Superconductivity and superfluidity are quantum mechanical phenomena in systems composed of a very large number of microscopic particles that can be observed with the "naked eye." Remarkable features of these systems include electrical flow with no resistance, or special fluids that creep up the sides of a container and overflow with no external influence.

When a superfluid is rotated or swirled, it develops cylinder-like vortices. In their paper featured in the June 10 issue of the journal Science, a team of scientists, including Pacific Northwest National Laboratory's Kenneth Roche, describes how these vortices form and evolve microscopically at very low temperatures in fermionic gas systems. They also describe the quantized vortices as they cross and reconnect. The team's simulations show that, in many instances, the system remains superfluid even when stirred at supercritical speeds, in contrast to a decades-old hypothesis that predicts the system would lose its superfluid properties under these circumstances.

The methods developed will open new avenues of research both in and astrophysics, as well as in condensed-matter and related fields. These methods can now be used to study various properties of , ultra-cold gases in traps and optical lattices, induced , vortices within a neutron star's crust, the onset of quantum turbulence and high-temperature superconductivity.

The team developed an extension of the time-dependent (DFT)—a method originally used in quantum chemistry and physics to study the electronic properties of molecules—for fermionic systems. Unlike a bosonic superfluid, the new mathematical framework needed for a fermionic superfluid is about a hundred thousand times more complex. To evaluate this extremely complex formulation, the research team turned to one of the world's fastest supercomputers, the Jaguar PF, a Cray XT5 system at the Department of Energy's Oak Ridge National Laboratory in Tennessee. Roche led the effort to develop software that allowed Jaguar to run the team's challenging calculations.

The team is studying the onset of quantum turbulence, the pinning and de-pinning mechanism of on "defects" in a real-time dynamics, and the dynamics of exotic pairing mechanisms such as the Fulde-Ferrell-Larkin-Ovchinnikov phase. For nuclei, the team plans to study induced gamma and neutron induced fission processes and to lay the foundation for extending the deterministic superfluid DFT to a stochastic quantization of the theory amenable to many-body collective tunneling. These calculations will only be possible on exascale and beyond computing platforms.

Explore further: Ultra-cold temperature physics opens way to understanding and applications

More information: Aurel Bulgac, Yuan-Lung Luo, Piotr Magierski, Kenneth Roche, Yongle Yu. "Real-Time Dynamics of Quantized Vortices in a Unitary Fermi Superfluid." Science. June 10, 2011.

Related Stories

Quantum memory and turbulence in ultra-cold atoms

July 20, 2009

Scientists at MIT have figured out a key step toward the design of quantum information networks. The results are reported in the July 20th issue of Physical Review Letters and highlighted in APS's on-line journal Physics.

Frictionless supersolid a step closer

February 14, 2010

Superfluid mixtures of atoms can boil and freeze at ultra-low temperatures. This freezing can result in the formation of supersolids of atoms that can flow alongside each other without friction, but are still set in a fixed ...

Delving into the world of the ultra-cold

September 2, 2010

( -- In Swinburne University's 'cold molecules lab', where temperatures one millionth of a degree above absolute zero are routinely achieved, researchers are making significant advances in understanding the weird ...

Chandra finds superfluid in neutron star's core

February 23, 2011

( -- NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 23, 2011
I'm very curious about the interaction dynamics of the vortices, can anyone point to documentation which mere non-physicists like myself can read?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.