Biologists reveal novel drug binding site in NMDA receptor subunit

June 16, 2011

Structural biologists at Cold Spring Harbor Laboratory (CSHL) have obtained a precise molecular map of the binding site for an allosteric inhibitor in a subtype of the NMDA (N-methyl-D-aspartate) receptor, which is commonly expressed in brain cells.

The newly discovered binding site -- a within the receptor -- is important because it is a potential target for drugs that can modulate NMDA receptors, dysfunctions of which have been implicated in depression, schizophrenia, Parkinson's and Alzheimer's diseases as well as stroke-related brain injuries.

Allosteric sites in neurotransmitters are distinguished from their "primary" or "active" binding sites. Importantly, the newly obtained molecular map will enable scientists to design highly specific compounds that home in on the allosteric site, thereby minimizing "off-target effects," which give rise to a drug's unwanted side effects.

In a study led by CSHL Associate Professor Hiro Furukawa and published June 15 in the journal Nature, the allosteric site of interest is shown to be in the region of NMDA receptors called the amino terminal domain. A class of allosteric inhibitors for NMDA receptors, called phenylethanolamines, has previously been identified. One such compound, ifenprodil, is known to bind specifically to the GluN1/GluN2B subtype of the , but not to other subtypes. The neuroprotective properties of phenylethanolamines have inspired scientists to employ them for treatment of and disorders. Some are now being tested in clinical trials for depression, pain, Parkinson's disease, and Alzheimer's disease.

The detailed blueprint of the allosteric site where phenylethanolamines bind to the receptor will facilitate rational design of improved compounds. In the work published on June 15th, Furukawa's group identifies the precise of phenylethanolamine within the amino terminal domain of GluN1/GluN2B NMDA receptors. The results were obtained through biochemistry and x-ray crystallography, a method that features exposing a crystalline form of the molecule under study to very high-energy x-ray beams, which reveals its features in great detail. This enabled the team to demonstrate that phenylethanolamine is recognized at the interface of the GluN1 and GluN2B subunits of the receptor, rather than at a previously predicted site within GluN2B.

"Before this study, we did not have a sufficiently precise map of NMDA receptor subunits to facilitate the design of better and more effective compounds that could dock at the allosteric site. Our results should move drug development in the right direction. We are now optimistic that the field can determine optimal ways of targeting NMDA receptors for therapeutic purposes," Furukawa says.

Explore further: Researchers add to understanding of how brain cells communicate

More information: "Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors" was published online ahead of print in Nature on June 15, 2011. The authors are: Erkan Karakas, Noriko Simorowski and Hiro Furukawa. The paper can be accessed at doi:10.1038/nature10180

Related Stories

Molecular architecture of key NMDA receptor subunit revealed

April 26, 2011

Structural biologists at Cold Spring Harbor Laboratory (CSHL) in collaboration with colleagues at Emory University have determined the molecular structure of a key portion, or subunit, of a receptor type commonly expressed ...

Recommended for you

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.