Researchers clarify bacterial resistance

Jun 24, 2011 by Astrid Smit

Just like plants and animals, bacteria have a range of defence mechanisms against viruses and other threats. Dutch researchers at the Wageningen Laboratory for Microbiology and their American and Russian colleagues have largely clarified the workings of one of these, they reported in the scientific journal PNAS at the beginning of June. This is important not only for fundamental research on bacteria but also for manufacturers working with bacteria, in the dairy industry for example.

The that the Wageningen researchers have got to the bottom of is called the CRISPR/Cas complex and is a feature of half of all bacteria. It consists of a protein-RNA complex that blocks viruses by binding itself to the DNA of these unwelcome guests and subsequently prevented them from reproducing. 'We discovered last year how the protein complex recognizes the viruses and then gets rid of them', says John van der Oost, professor of Microbiology at Wageningen University and one of the authors.

As soon as a virus has infected the cell, the CRISPR/Cas complex scans the of the invader. It pays attention to two specific parts of the virus, the research revealed. These are the protospacer, a small piece of the virus's DNA that can specifically bind itself to the RNA of the CRISPR/Cas complex, and the PAM motif, an even smaller piece of DNA next to it. If both these parts are present and match, the immune system launches the counterattack, breaking down the so that it cannot be expressed and the virus cannot reproduce. Both the protospacer and the PAM are essential for the recognition of the virus. 'When we provided laboratory viruses in which the PAM had been removed through a , the resistance process did not get going', explains Van der Oost.

Bacteria are constantly updating their immune systems. As soon as a turns up, the CRISPR/Cas complex makes a genetic copy in the form of . This spacer is added to the protein complex and goes into action when the virus attacks again. The next generation benefits too, as the entire CRISPR/Cas complex is passed on.

The clarification of the bacterial immune system is important not just for fundamental research but also for practical purposes, says Van der Oost. 'Producers can use our knowledge to make their bacteria more resistant.' In 2008, his research group introduced a CRISPR/Cas complex into a bacteria which did not have a comparable immune system at its disposal. The bacteria therefore became ten million times more resistant to a certain virus. The makes constant use of this knowledge, and is already protecting its yoghurt cultures against new viruses by expanding their CRISPR/Cas complexes through natural recombination. 'I am convinced that more producers will benefit from our discovery', says the microbiologist.

His publication in PNAS is the third in a row about the CRISPR/Cas complex, and will not be the last for the time being. It is likely that an article will soon appear in Nature. "I am afraid I am not allowed to tell you anything about the content."

Explore further: Surprise: Lost stem cells naturally replaced by non-stem cells, fly research suggests

Provided by Wageningen University

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Flu jab for bacteria

Mar 31, 2010

Viruses can wreak havoc on bacteria as well as humans and, just like us, bacteria have their own defence system in place, explains Professor John van der Oost, at the Society for General Microbiology's spring ...

Researchers unlock the secret of bacteria's immune system

Nov 04, 2010

A team of Université Laval and Danisco researchers has just unlocked the secret of bacteria's immune system. The details of the discovery, which may eventually make it possible to prevent certain bacteria from developing ...

Scientists identify key enzyme in microbial immune system

Sep 09, 2010

Imagine a war in which you are vastly outnumbered by an enemy that is utterly relentless - attacking you is all it does. The intro to another Terminator movie? No, just another day for microbes such as bacteria ...

Understanding a bacterial immune system one step at a time

May 17, 2011

Researchers at the University of Alberta have taken an important step in understanding an immune system of bacteria, a finding that could have implications for medical care and both the pharmaceutical and dairy industries.

Recommended for you

For resetting circadian rhythms, neural cooperation is key

2 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

4 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

23 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

Apr 16, 2014

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 0

More news stories

Fear of the cuckoo mafia

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...