Adjustable valves gave ancient plants the edge

Jun 09, 2011

Controlling water loss is an important ability for modern land plants as it helps them thrive in changing environments. New research from the University of Bristol, published today in the journal Current Biology, shows that water conserving innovations occurred very early in plants' evolutionary history.

The research focused on the role of stomata, microscopic pores in the surface of leaves that allow to be taken up for use in photosynthesis, while at the same time allowing water to escape. Instead of being fixed pores in the leaf, rather like a sieve, the stomata of modern plants are more like valves that open and close on demand. They do this in response to environmental and , such as light and carbon dioxide, therefore balancing the photosynthetic and water requirements of the plant. Therefore, a key evolutionary question is: when did plants develop these 'active' mechanisms of stomatal control?

Elizabeth Ruszala, a Gatsby Charitable Foundation-funded PhD student working in Professor Alistair Hetherington's research group in the School of Biological Sciences, studied the stomata of Selaginella uncinata, a member of a primitive group of plants called spikemosses, which first appeared approximately 400 million years ago.

Significantly, not only were the stomata of this ancient group of able to open and close in response to changes in light and carbon dioxide, they also responded to the key plant which regulates stomatal function – especially under drought conditions – in modern plants.

These results show that the ability to regulate stomatal aperture in response to changing environmental conditions was already present very early in plant evolution.

Research on understanding how stomata work is also directly relevant to the agriculture needs of the twenty-first century because a key target for crop breeders is the development of new varieties that produce excellent yields but use less water in the process.

Professor Alistair Hetherington said: "Understanding how plants made the successful transition from life in water to the successful colonization of the drying terrestrial environment is one of the big questions in contemporary plant biology. Our work shows that the acquisition of stomata that were able to open and close in response to changing environmental conditions, thereby helping plants to avoid drying out, was a very important step in the evolution of the land flora."

Explore further: The influence of the Isthmus of Panama in the evolution of freshwater shrimps in America

Related Stories

Gene helps plants use less water without biomass loss

Jan 11, 2011

(PhysOrg.com) -- Purdue University researchers have found a genetic mutation that allows a plant to better endure drought without losing biomass, a discovery that could reduce the amount of water required for growing plants ...

Plant 'breathing' mechanism discovered

Jul 12, 2010

A tiny, little-understood plant pore has enormous implications for weather forecasting, climate change, agriculture, hydrology, and more. A study by scientists at the Carnegie Institution's Department of Global Ecology, with ...

Plant gene for water efficiency found

Jul 11, 2005

ANU researchers have identified a gene that regulates the water efficiency of plants, the first to be discovered that mediates the process critical to plant survival, crop yield and vegetation dynamics. Dr Josette Masle, fro ...

Recommended for you

Dogs hear our words and how we say them

Nov 26, 2014

When people hear another person talking to them, they respond not only to what is being said—those consonants and vowels strung together into words and sentences—but also to other features of that speech—the ...

Amazonian shrimps: An underwater world still unknown

Nov 26, 2014

A study reveals how little we know about the Amazonian diversity. Aiming to resolve a scientific debate about the validity of two species of freshwater shrimp described in the first half of the last century, ...

Factors that drive sexual traits

Nov 26, 2014

Many male animals have multiple displays and behaviours to attract females; and often the larger or greater the better.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.