169 years after its discovery, Doppler effect found even at molecular level

May 10, 2011

Whether they know it or not, anyone who's ever gotten a speeding ticket after zooming by a radar gun has experienced the Doppler effect – a measurable shift in the frequency of radiation based on the motion of an object, which in this case is your car doing 45 miles an hour in a 30-mph zone.

But for the first time, scientists have experimentally shown a different version of the Doppler effect at a much, much smaller level – the rotation of an individual molecule. Prior to this such an effect had been theorized, but it took a complex experiment with a synchrotron to prove it's for real.

"Some of us thought of this some time ago, but it's very difficult to show experimentally," said T. Darrah Thomas, a professor emeritus of chemistry at Oregon State University and part of an international research team that today announced its findings in .

Most illustrations of the Doppler effect are called "translational," meaning the change in frequency of light or sound when one object moves away from the other in a straight line, like a car passing a radar gun. The basic concept has been understood since an Austrian physicist named Christian Doppler first proposed it in 1842.

But a similar effect can be observed when something rotates as well, scientists say.

"There is plenty of evidence of the rotational Doppler effect in large bodies, such as a spinning planet or galaxy," Thomas said. "When a planet rotates, the light coming from it shifts to higher frequency on the side spinning toward you and a lower frequency on the side spinning away from you. But this same basic force is at work even on the molecular level."

In astrophysics, this rotational Doppler effect has been used to determine the rotational velocity of things such as planets. But in the new study, scientists from Japan, Sweden, France and the United States provided the first experimental proof that the same thing happens even with molecules.

At this tiny level, they found, the rotational Doppler effect can be even more important than the linear motion of the molecules, the study showed.

The findings are expected to have application in a better understanding of molecular spectroscopy, in which the radiation emitted from molecules is used to study their makeup and chemical properties. It is also relevant to the study of high energy electrons, Thomas said.

"There are some studies where a better understanding of this rotational Doppler effect will be important," Thomas said. "Mostly it's just interesting. We've known about the Doppler effect for a very long time but until now have never been able to see the rotational in molecules."

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

Related Stories

Explained: the Doppler effect (w/ Video)

Aug 03, 2010

Many students learn about the Doppler effect in physics class, typically as part of a discussion of why the pitch of a siren is higher as an ambulance approaches and then lower as the ambulance passes by. ...

Scientists reverse Doppler Effect

Mar 07, 2011

(PhysOrg.com) -- Researchers from Swinburne University and the University of Shanghai for Science and Technology have for the first time ever demonstrated a reversal of the optical ‘Doppler Effect’ ...

CSIRO telescopes help rescue Titan experiment

Feb 15, 2005

CSIRO’s radio telescopes and others in Australia, China, Japan and the USA have revealed how the wind speeds on Saturn’s moon Titan vary with altitude-and have turned a disappointment into a triumph.

Using lasers to cool and manipulate molecules

Dec 07, 2009

(PhysOrg.com) -- "For years, we have been using laser cooling to trap and manipulate atoms," David DeMille tells PhysOrg.com. "This has been very useful for both basic science and many applications. Recent ...

Recommended for you

How to test the twin paradox without using a spaceship

1 hour ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Isaacsname
not rated yet May 10, 2011
" Mostly it's just interesting. "

Indeed it is. That's why I come here.
dollymop
not rated yet May 11, 2011
me too

More news stories

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...