When is it worth remanufacturing?

May 16, 2011 by David L. Chandler
When is it worth remanufacturing?
Graphic: Christine Daniloff

It seems like a no-brainer: Remanufacturing products rather than making new ones from scratch — widely done with everything from retread tires to refilled inkjet cartridges to remanufactured engines — should save a lot of energy, right?

Not so fast, says a new study by researchers at MIT.

In some cases, the conventional wisdom is indeed correct. But out of 25 case studies on products in eight categories done by a team led by Professor of Mechanical Engineering Timothy Gutowski, there were just as many cases where remanufacturing actually cost more energy as cases where it saved energy. And for the majority of the items, the savings were negligible or the energy balance was too close to call.

Why are the new results so different from what might have been assumed? The MIT team looked at the total energy used over the lifetime of a product — a life-cycle analysis — rather than just the energy used in the manufacturing process itself. In virtually all cases, it costs less money and less energy to make a product from the recycled “core” — the reusable part of the product — than to start from scratch. But the catch is that many of these remanufactured products are less energy efficient, or newer versions are more energy efficient, so the extra energy used over their lifetime cancels out the savings from the manufacturing stage.

A simple and familiar example is retread tires. They do indeed require less energy to make than new tires, but their rolling resistance might turn out to be just a bit higher, which would mean their energy advantage is eaten up by the extra gas used while driving on them.

The study, published in the journal Environmental Science & Technology, is the latest from Gutowski and his students that, as he puts it, “takes what appears to be a simple, straightforward problem and shows that the world is a far more complicated place than people thought.” The paper was co-authored by MIT materials science and engineering graduate student Sahil Sahni; Avid Boustani SM ’10, a recent graduate from the Department of Mechanical Engineering; and Stephen Graves, the Abraham J. Siegel Professor of Management in the MIT Sloan School of Management. The work was supported by the MIT Energy Initiative and the Singapore-MIT Alliance.

What often turns out to be the case, Gutowski says, is that “new technology shows up that is so much more efficient, from an energy point of view, that you should get rid of the old device” rather than having it fixed or buying a remanufactured version. For example, the efficiency of many new appliances — such as refrigerators and washing machines — are  so much improved over older models that, in terms of energy use, a new model is almost always the better choice.

Unfortunately, that is typically not the way people and businesses make their choices. “The decision is always on cost, not energy,” Gutowski says. For example, a remanufactured electric motor, in which the metal core is reused but wound with new wires, is typically 0.5 to 1 percent less efficient than a newer motor. “There is still a cost advantage” to the remanufactured motors, he says, “but from an energy point of view, it’s the opposite.”

Other effects stem from remanufactured products going to different markets than their original destinations. For example, old cell phones can be remanufactured, but the remanufactured phones tend to be sold in developing countries. “If it goes to a different market, it leads to an expansion of the market,” Gutowski explains, so the overall level of cell phone usage globally — and the energy needed to power them — ends up increasing.

For some kinds of products, the benefits of remanufacturing are unequivocal. It clearly makes sense to remanufacture anything that consumes an insignificant amount of energy when it is being used, he says — for example, furniture.

Julian Allwood, a senior lecturer and leader of the Low Carbon Materials Processing Group at the University of Cambridge in England, says this is a very original analysis and the findings are of high quality because they are “carefully informed with real numbers.” He adds that while the results seem to be valid for the product categories the team studied, “My only concern is that their product catalogue was mainly consumer products — i.e., not buildings, infrastructure, industrial equipment — which are probably all more significant categories as drivers of global environmental impacts.”

Gutowski emphasizes that this research does not necessarily suggest a specific course of action. For any given product, there may be other reasons for preferring the remanufactured version even if it produces a net energy penalty. For example, remanufacturing may reduce the burden on landfills, reduce use and disposal of some toxic materials, or produce needed jobs in a particular area. And the expanded use of cell phones may have important social benefits, such as contributing to the recent wave of revolutions in North Africa and the Middle East. “We’re not saying you shouldn’t do it,” he says — just suggesting that it’s worth understanding the decision’s effects in their entirety.

“You think you’re doing the right thing, it sounds so simple,” Gutowski says. But when it comes to understanding the true impact of purchasing decisions on use, “things are far more complicated than we expect.”


This story is republished courtesy of MIT News (web.mit.edu/newsoffice/), a popular site that covers news about MIT research, innovation and teaching.

Explore further: Imaginative ideas for a 'greenlight district' in Amsterdam

Related Stories

3 Questions: ARPA-E chief on the energy challenge

Oct 15, 2010

During a visit on Wednesday to MIT, Arun Majumdar, director of the U.S. Department of Energy’s Advanced Research Projects Agency – Energy (ARPA-E), discussed the global energy challenge and the role ...

Solar leader sees bright future

Dec 10, 2010

Zhengrong Shi, an engineer turned entrepreneur, has become one of China’s richest citizens by betting heavily on the future of solar power. In a talk on Tuesday at MIT, he outlined his vision for how ...

The big picture on energy loss

Mar 16, 2011

Getting an energy audit of a home or a commercial building can be a time-consuming and labor-intensive process. But new techniques and technology developed by a team of MIT researchers have streamlined the ...

Energy Conference spotlights military's green energy

Mar 22, 2011

It’s not surprising that the U.S. Navy should be at the cutting edge of new energy alternatives, said Secretary of the Navy Ray Mabus, speaking at the annual MIT Energy Conference on March 5. Innovation ...

Solar power, with a side of hot running water

May 03, 2011

MIT researchers and their collaborators have come up with an unusual, highly efficient and possibly less expensive way of turning the sun’s heat into electricity.

Recommended for you

Image: Testing electric propulsion

Aug 20, 2014

On Aug. 19, National Aviation Day, a lot of people are reflecting on how far aviation has come in the last century. Could this be the future – a plane with many electric motors that can hover like a helicopter ...

Where's the real value in Tesla's patent pledge?

Aug 20, 2014

With the much-anticipated arrival next month of electric vehicle manufacturer Tesla's Model S to Australian shores, it's a good time to revisit Tesla's pledge to freely share patents. ...

New type of solar concentrator doesn't block the view

Aug 19, 2014

(Phys.org) —A team of researchers at Michigan State University has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through ...

Asian inventions dominate energy storage systems

Aug 19, 2014

In recent years, the number of patent applications for electrochemical energy storage technologies has soared. According to a study by the Technical University Munich, the largest volume of applications is ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

fsmith
5 / 5 (1) May 16, 2011
Have they factored in remans failing faster than a new product, i.e. retreads tend to come apart.
CarolinaScotsman
not rated yet May 16, 2011
Did they include the cost of the materials used to make the new product. The cost of the materials themselves, the energy needed to get/make them, and the cost of using additional non-renewable (in some cases) resources as opposed to re-using existing ones. The world is indeed more complicated then at first appears.
Eikka
not rated yet May 16, 2011
The moral of the story.

Scrap your old cellphone so people in Africa can't get any?

What a great way to save energy and materials - deprive poor people of them.
unknownorgin
1 / 5 (1) May 17, 2011
They should study the huge waste occuring in california and other states with overkill smog laws that cause hundreds of thousands of perfectly good cars to be crushed just because they are emmiting 2 or 3 parts per million more than factory specs. All that rubber and plastic is burned in a melting furnace so how is it cleaning the air?