Heads or tails? Worm with abundant ability to regenerate relies on ancient gene to make decisions

May 17, 2011 By Megan Fellman

(PhysOrg.com) -- Most people don’t think worms are cool. But the tiny flatworm that Northwestern University scientist Christian Petersen studies can do something very cool indeed: it can regenerate itself from nearly every imaginable injury, including decapitation. When cut in half, it becomes two worms.

This amazing ability of the planarian to regenerate its entire body from a small wedge of tissue has fascinated scientists since the late 1800s. The worms can regrow any missing cell or tissue -- muscle, neurons, epidermis, eyes, even a new brain.

Now Petersen and colleague Peter Reddien of the Massachusetts Institute of Technology (MIT) have discovered that an ancient and seldom-studied gene is critical for in these animals. The findings may have important ramifications for tissue regeneration and repair in humans.

The gene, called notum, plays a key role in the regeneration decision-making process. Protein from this gene determines whether a head or tail will regrow at appropriate amputation sites, the researchers found.

“These worms are superstars in regeneration, and we want to learn how they restore missing body parts,” said Petersen, an assistant professor of molecular biosciences in Northwestern’s Weinberg College of Arts and Sciences. “We anticipate that understanding the details of how regeneration occurs in nature will ultimately have a broad impact on the repair of human tissue.”

The study is published in the May 13 issue of the journal Science. Petersen, a former postdoctoral fellow in Reddien’s lab, is the first author. Reddien, associate professor of biology at MIT and the Whitehead Institute for Biomedical Research, is the other author.

The ability of planarians to regenerate any missing tissues after injury depends on a pool of adult stem cells. Researchers hope that by studying this worm they will understand the molecular processes that naturally allow stem cell-mediated tissue repair in higher animals.

In their paper, Petersen and Reddien show that the gene notum is critical for head regeneration in planarians. Inactivation of notum caused animals to regenerate a tail instead of a head, creating two-tailed animals.

“Injuries can alter tissues in many different ways, so regenerating animals must have robust systems that specify restoration of appropriate structures,” Petersen said. “Our results suggest that the animals ‘decide’ what needs to be regenerated, in part, by using cues that indicate axis direction with respect to the wound.”

Planarians are 2 to 20 millimeters in size and have a complex anatomy with around a million cells. They live in freshwater ponds and streams around the world. The worm’s genome has been sequenced, and its basic biology is well-characterized, making planarians popular with scientists.

Petersen and Reddien also found that notum controls a widely used biochemical circuit, Wnt signaling, in order to promote proper regeneration. This ancient signaling circuit operates in all animals and controls many processes in development and disease, including tissue repair and cancer progression.

In the paper, the authors describe how the gene notum acts at head-facing wounds as a dimmer switch to dampen the Wnt pathway and promote head regeneration. When the head or tail of a planarian is cut off, Wnt is activated. This Wnt activity turns on notum, but only at head-facing wounds. In a feedback loop, notum then turns Wnt down low enough that it can no longer prevent a head from forming. In tail-facing wounds, however, notum is not activated highly, a condition that promotes tail regrowth. (It takes the worm about a week to regrow a head or tail.)

The researchers are intrigued by this new role for notum. Like the Wnt signaling pathway, notum is highly conserved throughout species, from sea anenomes to fruit flies to humans, but little is known about its roles in biology. Because both notum and the Wnt signaling pathway are so evolutionarily ancient, their interaction in planarians may indicate a relationship that is important in other animals as well.

“We anticipate that this phenomenon of feedback inhibition regulating the levels of Wnt activity will be seen broadly in other biological contexts,” Reddien said. “Wnt signaling is so broadly studied and important in biology, including for tissue repair and regeneration. Notum isn’t really on the map for the broad roles Wnt signaling plays in , but this work demonstrates the central role it can play.”

Explore further: Living in the genetic comfort zone

More information: The name of the paper is “Polarized Activation of Notum at Wounds Inhibits Wnt Signaling to Promote Planarian Head Regeneration.”

ABSTRACT
Regeneration requires initiation of programs tailored to the identity of missing parts. Head-versus-tail regeneration in planarians presents a paradigm for study of this phenomenon. After injury, Wnt signaling promotes tail regeneration. We report that wounding elicits expression of the Wnt inhibitor notum preferentially at anterior-facing wounds. This expression asymmetry occurs at essentially any wound, even if the anterior pole is intact. Inhibition of notum with RNA interference (RNAi) causes regeneration of an anterior-facing tail instead of a head, and double-RNAi experiments indicate that notum inhibits Wnt signaling to promote head regeneration. notum expression is itself controlled by Wnt signaling, suggesting that regulation of feedback inhibition controls the binary head-tail regeneration outcome. We conclude that local detection of wound orientation with respect to tissue axes results in distinct signaling environments that initiate appropriate regeneration responses.

Related Stories

Ancient gene gives planarians a heads-up in regeneration

May 12, 2011

A seldom-studied gene known as notum plays a key role in the planarian's regeneration decision-making process, according to Whitehead Institute scientists. Protein from this gene determines whether a head or tail will regrow ...

Figuring out the heads or tails decision in regeneration

Sep 14, 2009

Amputations trigger a molecular response that determines if a head or tail will be regrown in planaria, a flatworm commonly studied for its regenerative capabilities. Until now, no molecular connection between wounding and ...

From a single adult cell, flatworm crafts a new body

May 12, 2011

A single adult cell from one of the most impressive masters of regeneration in the animal kingdom – the planarian – is all it takes to build a completely functional new worm, researchers have learned. The study ...

Recommended for you

Refined method to convert lignin to nylon precursor

21 minutes ago

A new study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates the conversion of lignin-derived compounds to adipic acid, an important industrial dicarboxylic acid produced for its use as ...

Living in the genetic comfort zone

15 hours ago

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

Better genes for better beans

20 hours ago

Some of the most underappreciated crops could soon become the most valuable tools in agriculture with new research from the Centre for Underutilised Crops at the University of Southampton. Coordinator Mark Chapman has created ...

Aggressive plant fungus threatens wheat production

20 hours ago

The spread of exotic and aggressive strains of a plant fungus is presenting a serious threat to wheat production in the UK, according to research published in Genome Biology. The research uses a new survei ...

A taxi ride to starch granules

22 hours ago

Plant scientists at ETH have discovered a specific protein that significantly influences the formation of starch in plant cells. The findings may be useful in the food and packaging industries.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.