Stanford engineers create a tiny, energy-efficient laser for optical communication systems

May 17, 2011 By Andrew Myers
The wafer's holes 'act like a hall of mirrors to reflect photons back toward the center of the laser,' said Jelena Vuckovic, an associate professor of electrical engineering. Courtesy of Jelena Vuckovic

(PhysOrg.com) -- In the push toward ever-smaller and ever-faster data transmission technology, a team of Stanford electrical engineers has produced a nanoscale laser that is much faster and vastly more energy efficient than anything available today.

To the mantra of "faster, smaller" , you can now add "more efficient." The electrical data interconnections inside the computers of America's massive datacenters consume huge amounts of electricity, and there is a technological drive afoot to reduce that consumption.

To that end, Stanford researchers have unveiled a tiny, highly efficient semiconductor laser that could herald a new era in low-energy data interconnects that communicate with as well as .

"Today's electrical circuits require a lot of energy to transmit a bit of information and are, relatively speaking, slow," said Jelena Vuckovic, an associate professor of at Stanford working on the new generation of nanoscale lasers.

She and her team – including Stanford graduate students Bryan Ellis and Gary Shambat, in collaboration with the research groups of James Harris at Stanford and Eugene Haller at the University of California-Berkeley – introduced their laser in a paper just published in Nature Photonics.

Crossing the threshold

Vuckovic is working on a type of data transmitter known as a photonic-crystal laser. These lasers are particularly promising, not just for their speed and size, but because they operate at low thresholds – they don't use much energy.

"We've produced a nanoscale optical data transmitter – a laser – that uses 1,000 times less energy and is 10 times faster than the very best laser technologies in commercial use today," said the professor. "Better yet, we believe we can improve upon those numbers."

While others have created low-threshold lasers, Vuckovic said, the most promising have required a second laser to inject them with the energy they need to work – known as "pumping" – hardly an ideal solution.

"We really needed a laser pumped with , not light," she said. The only available electrically pumped photonic-crystal laser was inefficient and difficult to fabricate, making it commercially impractical. Now, for the first time, Vuckovic has demonstrated an electrically pumped laser that is both easy to manufacture and delivers dramatically reduced energy consumption.

To create the laser, the researchers first "grow" a wafer of gallium arsenide, a semiconductor crystal, using a beam that sprays molecules to build layers one by one. At certain points in the layering process, they shuffle in three thin layers of a second crystal – indium arsenide. A cross-section reveals that the indium arsenide appears like little bumps or hills – quantum dots – within the wafer.

A deck of cards

When done, the wafer resembles a sort of nanophotonic deck of cards a mere 220 nanometers thick. Thick, however, is a relative term. It would take more than 1,000 of Vuckovic's wafers stacked atop one another to equal the thickness of a single playing card.

Next, the engineers "dope" two discrete areas on top of the wafer with ions. On one side, the researchers seed ions of silicon, and on the other they implant ions of beryllium.

These two regions are faintly visible on the surface, widening toward each other, approaching but never quite meeting at the center of the wafer. These ion-infused regions help focus the current flow to a very precise area at the core of the wafer where light is emitted, improving the performance of the laser.

Finally, with the basic wafer fabricated, the researchers have yet one more trick up their engineering sleeves. They finish by etching a precise honeycomb pattern of circular holes through the wafer.

The size and positioning of these holes is critical to the success of the laser. If the holes are too small or too large, spaced too closely or too far apart, the laser will not perform optimally – in some cases, it won't perform at all.

"These holes are almost perfectly round with smooth interior walls and are very important to the laser's function. They act like a hall of mirrors to reflect photons back toward the center of the laser," said Vuckovic.

Here, in the heart of the wafer, the photons are concentrated and amplified into a tiny ball of light – a laser – which can be modulated up to 100 billion times per second, 10 times the best data transmitters now in use. Thus the light becomes binary data – light on, 1; light off, 0.

Real-world possibilities

At one end of a semiconductor circuit is a laser transmitter beaming out 1s and 0s as blasts of light. At the other end is a receiver that turns those blasts of light back into electrical impulses. All that is needed is a way to connect the two.

To do this, the researchers heat and stretch a thin fiberoptic filament, hundreds of times thinner than a human hair. The light from the laser travels along the fiber to the next junction in the circuit.

All this happens in a layer so thin hundreds of these nanophotonic transmitters could be arranged on a single layer, and many layers could then be stacked into a single chip.

Before Vuckovic's laser interconnect becomes commonplace, however, certain questions will need to be resolved. The new laser operates at relatively cold temperatures, 150 degrees Kelvin and below – about 190 degrees below zero Fahrenheit – but Vuckovic is confident and pressing forward.

"With improvements in processing," she said, "we can produce a that operates at room temperature while maintaining energy efficiency at about 1,000 times less than today's commercial technologies. We can see a light on the horizon."

Explore further: New material puts a twist in light

Related Stories

Scientists show atoms act like lasers

Feb 25, 2011

(PhysOrg.com) -- Scientists from The Australian National University have developed an atom laser that behaves exactly like a light laser, opening up new possibilities in things like holograms.

FLASH Imaging Redux: Nano-Cinema is Born

Jul 08, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precur ...

New lasing technique inspired by brightly colored birds

May 09, 2011

(PhysOrg.com) -- Researchers at Yale University have succeeded in building a new kind of laser based on the way brightly colored birds show their colors. Building on the new approach to creating laser beams, ...

Recommended for you

Creating optical cables out of thin air

46 minutes ago

Imagine being able to instantaneously run an optical cable or fiber to any point on earth, or even into space. That's what Howard Milchberg, professor of physics and electrical and computer engineering at ...

New material puts a twist in light

Jul 18, 2014

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry ...

Plasmon-enhanced Polarization-selective filter

Jul 17, 2014

As we all know, some optical devices can only work with a certain incident polarization direction. In this case, a polarizer is necessary to shift the polarization direction of linearly polarized light. A ...

Laser physics upside down

Jul 15, 2014

At the Vienna University of Technology a system of coupled lasers has been created which exhibits truly paradoxical behaviour: An increase in energy supply switches the lasers off, reducing the energy can ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Husky
5 / 5 (2) May 17, 2011
he probablty meant "light at the end of the quantum tunnel"
wealthychef
not rated yet May 17, 2011
They are comparing apples and oranges here. How much energy will room-temperature versions of these lasers use compared to existing copper wire buses? There is a huge need for fast interconnects between chips on modern computers, especially moving into the exascale world.
trekgeek1
5 / 5 (1) May 17, 2011
he probablty meant "light at the end of the quantum tunnel"


Okay, okay, word play rewarded. Additionally, "probablty" is almost a play on "probability" which governs the quantum tunneling, so spelling error super pun created.
that_guy
not rated yet May 18, 2011
I want to string up a million of these micro lasers together and see if I can create one big super efficient super laser doomsday device.

But until then, I'm more than happy to have faster interconnects and fiber optic lines.