How sensors can detect the crime-solving clues at our fingertips

May 20, 2011
Electronic image of fingerprints

A new approach to fingerprinting using sensor technology developed at the University of Sussex could soon be helping forensics teams date and identify prints left at a crime scene - by capturing their electrical imprint.

Currently, traditional methods of fingerprinting don't allow forensics experts to differentiate between prints at a left before and after the crime has been committed, or to differentiate important or interesting prints from background "clutter" (ie very old fingerprints). Current methods (including "dusting", chemical and ) also take a long time to process and risk contaminating vital contained in fingerprints during, for example, chemical processing.

The application of Electric Potential Sensors (EPS) technology to fingerprinting is one of numerous applications being investigated by its developers, Professor Robert Prance and his research team in the University's Centre for Physical Electronics and Quantum Technology.

Experiments involving EPS scaled down to showed that it might be possible to accurately date and identify the electrical imprint left behind in a fingerprint without interfering with any other evidence the fingerprint might reveal.

The findings are now published in the journal Forensic Science International.

The sensors work by detecting extremely low-frequency electrical activity over a distance of 5 microns (one micron being equal to one millionth of a metre).  This microscopic scale and sensitivity allows the sensor to map a high-resolution image of electrical charge that occurs over the surface of a source material (for example a human finger), when it makes contact with a thin insulating surface (ie a plastic surface). The trace of this electrical charge left behind in the fingerprint is imaged using an electric field microscopy system.

The technology offers two significant advantages over traditional fingerprint analysis:

• As the finger print ages, the decays, sometimes over a period of days, allowing scientists to date the print and compare that to the estimated time of the crime. This ability could have important implications in the elimination of suspects, for example.

• The non-invasive nature of the technology means that biological material in the print is not destroyed by chemical processing and can still be harvested for DNA analysis. It would also allow the analyst to harvest material selectively, potentially saving time by avoiding indiscriminate DNA analysis of all prints in a given area.

Professor Prance says: "In its present form this technique could be used in forensic laboratories now and with the development of arrays of sensors could easily become field deployable in the near future."

Explore further: Ant colonies help evacuees in disaster zones

More information: 'Imaging electrostatic fingerprints with implications for a forensic timeline, Philip Watson, Robert Prance et al, Forensic Science International DOI: 10.1016/j.forsiint.2011.02.024

add to favorites email to friend print save as pdf

Related Stories

False positives rare from fingerprint examiners

Apr 26, 2011

In a controlled study, fingerprint examiners who determined that a crime scene-quality print matched a high-quality sample from the same individual were correct 99.8% of the time.

Recommended for you

Quantenna promises 10-gigabit Wi-Fi by next year

4 hours ago

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

New US-Spanish firm says targets rich mobile ad market

5 hours ago

Spanish telecoms firm Telefonica and US investment giant Blackstone launched a mobile telephone advertising venture on Wednesday, challenging internet giants such as Google and Facebook in a multi-billion-dollar ...

Environmentally compatible organic solar cells

5 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...