Scientists uncover chemical transformations in cobalt nanoparticles

May 24, 2011 By Anne Ju
Scientists unveil transformations in cobalt
The evolution schematics of transition from cobalt to cobalt phosphide nanocrystals.

Understanding the intricacies of how nanoparticles undergo chemical transformations could lead to better ways to tailor their composition, which can lead to advanced material properties.

Using the Cornell High Energy Synchrotron Source, scientists led by Richard Robinson, assistant professor of materials science and engineering, uncovered exactly what happens when cobalt nanoparticles transform into two phases of cobalt phosphides.

Their work, published in the , was featured by the journal as a "Hot Article" earlier this month.

The effect Robinson's team observed in the cobalt transitions was a nanoparticle hollowing due to asymmetric diffusivities of cations and anions. In other words, the cations move out from the core faster than anions can diffuse in, leading to a hollow particle.

Other groups have reported on this "Kirkendall" effect, but the Robinson team was the first to show that this hollowing is more complex than previously thought and can be studied as a two-step process. Their work could be used to control this process and produce complex particles with properties tailored for use in energy applications. Metal phosphides have a wide range of properties -- ferromagnetism, superconductivity, catalytic activity and among them.

The work was done in collaboration with scientists led by Richard Hennig, assistant professor of materials science and engineering. It was supported by King Abdullah University of Science and Technology, the Cornell Center for Materials Research and the Center at Cornell.

Explore further: Team pioneers strategy for creating new materials

add to favorites email to friend print save as pdf

Related Stories

Size matters in crucial redox reactions

Oct 12, 2010

(PhysOrg.com) -- Particle size has a far more dramatic impact on chemical reactivity than previously thought, according to new research from UC Davis. The results have implications for understanding a wide range of vital ...

Shape matters in the case of cobalt nanoparticles

Jun 17, 2009

Shape is turning out to be a particularly important feature of some commercially important nanoparticles—but in subtle ways. New studies* by scientists at the National Institute for Standards and Technology ...

Recommended for you

Team pioneers strategy for creating new materials

2 hours ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

7 hours ago

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Breaking benzene

Aug 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0