Scientists identify most proteins made by parasitic worm

May 23, 2011

A team led by Thomas B. Nutman, M.D., of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has completed a large-scale analysis of most of the proteins produced by Brugia malayi, one kind of parasitic worm that causes lymphatic filariasis, or elephantiasis. The greatly swollen lower limbs that can result from chronic infection with this mosquito-borne parasite can be severely disabling.

The investigators characterized 7,103 proteins produced in various stages of the worm's lifecycle, including male and female adult forms that live in the body's ; asexual stages that circulate in ; and the larval stage that first infects humans.

The nature and relative amounts of proteins produced during successive stages of the worm's lifecycle provide clues to their likely importance in creating and maintaining infection. For example, proteins made in abundance by larval worms might serve as targets for developing vaccines to prevent infections. Proteins made in large amounts by adult worms might serve as targets for developing drugs to treat infections and potentially halt transmission of the parasite from an infected person to a potential mosquito carrier.

In addition to identifying the worm-made proteins, the team also characterized most of the proteins made by Wolbachia, bacteria that live inside B. malayi. Human inflammatory immune responses to the combined presence of Wolbachia and B. malayi are thought to be responsible for many symptoms of lymphatic filariasis.

Sequencing of the B. malayi genome, which enabled this research on the worm's proteins to be carried out, was completed by National Institutes of Health-funded researchers in 2007.

Explore further: Evolution: The genetic connivances of digits and genitals

More information: S Bennuru et al. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proceedings of the National Academy of Sciences USA Early Edition DOI: 10.1073/pnas.1011481108 (2011).

Provided by National Institutes of Health

not rated yet

Related Stories

Barrier in mosquito midgut protects invading pathogens

Mar 11, 2010

Scientists studying the Anopheles gambiae mosquito - the main vector of malaria - have found that when the mosquito takes a blood meal, that act triggers two enzymes to form a network of crisscrossing proteins around the ...

Recommended for you

Evolution: The genetic connivances of digits and genitals

7 hours ago

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Surrogate sushi: Japan biotech for bluefin tuna

17 hours ago

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

Scientists map mouse genome's 'mission control centers'

Nov 19, 2014

When the mouse and human genomes were catalogued more than 10 years ago, an international team of researchers set out to understand and compare the "mission control centers" found throughout the large stretches ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.