Scientists set a new record for measuring magnetic vibrations using the spin of a single atom

May 25, 2011

The lab, though it may seem quiet and insulated, can be as full of background noise as a crowded train station when we're trying to catch the announcements. Our brains can filter out the noise and focus on the message up to a certain point, but turning up the volume on the loudspeakers – improving the signal-to-noise ratio – helps as well.

Separating out the signal from the noise – increasing one while reducing the other – is so basic that much of scientific research could not take place without it. One common method, developed by the physicist Robert Dicke at Princeton University, is based on a principle similar to the one that enables radio broadcasts to pass through the noisy atmosphere. In short, one modulates electric waves (which correspond to the sound waves) one wishes to send over long distances, adding them on top of a high-frequency wave. To listen to the broadcast, one must have a receiver that is tuned to the frequency of the carrier wave (that numbered band on the FM dial), which then splits the two waves apart and amplifies the second "rider" wave – the music or talk we want to hear.

The method used by the physics labs is called "locked-in amplification." Here, too, a low-frequency, measured signal "rides" a high-frequency wave. A locked-in amplifier singles out the specific wave from the rest of the noise, "locking" onto the required signal and enabling scientists to make all sorts of accurate measurements.

To obtain good spatial resolution, one should measure with the smallest possible detector; one can't get much smaller than a single atom. The world of single , however, is governed by the laws of quantum physics, and any sort of observation in the quantum world is a complex undertaking. The Heisenberg uncertainty principle, one of the cornerstones of quantum theory, sets limits on our ability to measure with any kind of precision. But that very theory contains some clues as to how these limits can be approached.

Dr. Roee Ozeri and research students Shlomi Kotler, Nitzan Akerman, Yinnon Glickman and Anna Keselman in the Weizmann Institute's Physics of Complex Systems Department applied the rules of quantum mechanics to a single atomic-ion detector, building a quantum version of a locked-in amplifier. Using the ions' spin as a sensor, they were able to measure magnetic vibrations with a spatial resolution of a just few nanometers (a few billionths of a meter). The sensitivity of this measurement was extremely high: around 100 times better than any previous such measurement. This technique, says Ozeri, could be used in physics labs around the world to improve the sensitivity of all sorts of quantum sensors.

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

Researchers could herald a new era in fundamental physics

Feb 03, 2009

Cardiff University researchers who are part of a British-German team searching the depths of space to study gravitational waves, may have stumbled on one of the most important discoveries in physics according to an American ...

New Amplifier Pushes the Boundary of Quantum Physics

May 05, 2010

(PhysOrg.com) -- If powerful new quantum computers are to reach their enormous potential, they will need amplifiers capable of transmitting signals so weak they consist of a single photon. In the May 6 edition ...

Physicists move closer to the quantum limit

Apr 12, 2004

A new experiment in the US has come close to detecting quantum effects in a macroscopic object. Keith Schwab and colleagues from the National Security Agency (NSA) working at the University of Maryland have measured the vibrations ...

Probing the laws of gravity: A gravity resonance method

Apr 18, 2011

Quantum mechanical methods can now be used to study gravity: At the Vienna University of Technology (TU Vienna), a measurement method was developed, which allows to test the fundamental theories of physics.

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.