Scientist instils new hope of detecting gravitational waves

May 27, 2011

( -- Direct evidence of the existence of gravitational waves is something that has long eluded researchers, however new research has suggested that adding just one of the proposed detectors in Japan, Australia and India will drastically increase the expected rate of detection.

In a study published today, Friday, 27 May, in IOP Publishing's journal Classical and Quantum Gravity, Professor Bernard Schutz, of the Institute, Germany, demonstrated that an additional detector would more than double the detection rate of and could double the amount of sky being covered.

It was estimated last year that by 2016 the existing network of four detectors would be able to detect, on average, 40 neutron-star merger events per year by monitoring the gravitational waves they produce. Using a , this study showed that by performing optimal coherent data analysis, the network could theoretically detect 160 events per year.

The positioning of the current network actually makes such a large increase in detection rate unlikely; however Schutz has shown that using any of the three additional locations would change this dramatically.

The addition of all three new detectors would enable the detection of around 370 events a year, which could increase to 500 events after a few years of operation.

These detectors are most likely to encounter 'short bursts' of gravitational waves that arise from two stars or two black holes orbiting each other. The sheer acceleration of these types of events cause a distortion in space time - known as a gravitational wave - that spreads outwards like ripples moving across a lake.

Professor Schutz said, "The improvements brought about by new detectors are much bigger than the proportionate extra investment required. Even moving an existing LIGO detector to Australia brings two to four times the number of good-quality detections and also dramatically improves the direction information for the events."

"The new detector in Japan, approved last year, would add extra sensitivity and reliability and greatly improve sky coverage. Not only would we be more certain than ever of making detections, we would begin to be able to study and gamma ray bursts with information obtainable in no other way."

Einstein's theory of general relativity describes how objects with mass bend and curve space-time. One can imagine holding out a taut bed sheet and placing a football in the centre – the bed sheet will curve around the football, readily representing how space-time gets curved by objects with mass.

Just like the ripples moving across a lake, the distortion in space-time, caused by accelerating objects, gradually decreases in strength, so by the time they finally reach Earth they are very hard to detect.

Professor Schutz continued, "In my mind, detecting gravitational waves opens up a new way of investigating the universe. We expect frequent detections of gravitational waves from merging black holes, whose waves will carry an unmistakable signature. Since gravitational waves are the only radiation emitted by , we will for the first time have a direct observation of a black hole."

"Beyond that, gravitational waves have great penetrating power, so they will allow us to see directly to the centre of the systems responsible for supernova explosions, gamma-ray bursts, and a wealth of other systems so far hidden from view."

At the moment, there are four detectors, currently being updated, that have the necessary sensitivity to measure gravitational waves. Three of these detectors exist as part of the LIGO project – two in Hanford, Washington, and one in Livingston, Louisiana, - whilst another detector exists in Cascina, Italy, as part of the VIRGO project.

Funding has begun for an additional detector located in Japan whilst there are further proposals for developing detectors in Australia and India. It has also been proposed to move one of the Hanford detectors to Australia.

A jointly owned British-German detector, located near Hanover, Germany, called GEO600 will begin observations for gravitational waves this summer, until the LIGO and VIRGO become fully operational again.

Explore further: Technique for heat-assisted magnetic recording media promises improved writeability for next-generation hard drives

More information: Networks of gravitational wave detectors and three figures of merit, Bernard F Schutz 2011 Class. Quantum Grav. 28 125023 doi:10.1088/0264-9381/28/12/125023

This paper develops a general framework for studying the effectiveness of networks of interferometric gravitational wave detectors and then uses it to show that enlarging the existing LIGO–VIRGO network with one or more planned or proposed detectors in Japan (LCGT), Australia, and India brings major benefits, including much larger detection rate increase than previously thought. I focus on detecting bursts, i.e. short-duration signals, with optimal coherent data-analysis methods. I show that the polarization-averaged sensitivity of any network of identical detectors to any class of sources can be characterized by two numbers—the visibility distance of the expected source from a single detector and the minimum signal-to-noise ratio (SNR) for a confident detection—and one angular function, the antenna pattern of the network. I show that there is a universal probability distribution function (PDF) for detected SNR values, which implies that the most likely SNR value of the first detected event will be 1.26 times the search threshold. For binary systems, I also derive the universal PDF for detected values of the orbital inclination, taking into account the Malmquist bias; this implies that the number of gamma-ray bursts associated with detected binary coalescences should be 3.4 times larger than expected from just the beaming fraction of the gamma burst. Using network antenna patterns, I propose three figures of merit (f.o.m.'s) that characterize the relative performance of different networks. These measure (a) the expected rate of detection by the network and any sub-networks of three or more separated detectors, taking into account the duty cycle of the interferometers, (b) the isotropy of the network antenna pattern, and (c) the accuracy of the network at localizing the positions of events on the sky. I compare various likely and possible networks, based on these f.o.m.'s. Adding any new site to the planned LIGO–VIRGO network can dramatically increase, by factors of 2–4, the detected event rate by allowing coherent data analysis to reduce the spurious instrumental coincident background. Moving one of the LIGO detectors to Australia additionally improves direction finding by a factor of 4 or more. Adding LCGT to the original LIGO–VIRGO network not only improves direction finding but will further increase the detection rate over the extra-site gain by factors of almost 2, partly by improving the network duty cycle. Including LCGT, LIGO-Australia, and a detector in India gives a network with position error ellipses a factor of 7 smaller in area and boosts the detected event rate a further 2.4 times above the extra-site gain over the original LIGO–VIRGO network. Enlarged advanced networks could look forward to detecting 300–400 neutron star binary coalescences per year.

Related Stories

Scientists aim to unlock gravitational wave mysteries

Oct 19, 2006

Scientists at The Australian National University today joined a consortium of universities launching plans for a new observatory to detect a space phenomenon that has challenged physicists since it was first proposed by Einstein ...

LIGO and Virgo Join Forces In Search for Gravitational Waves

Feb 14, 2007

The Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometric gravitational-wave detector of the European Gravitational Observatory (EGO) near Pisa, Italy, have agreed to join in a collaborative ...

LIGO Sheds Light on Cosmic Event

Dec 21, 2007

An analysis by the international LIGO (Laser Interferometer Gravitational-Wave Observatory) Scientific Collaboration has excluded one previously leading explanation for the origin of an intense gamma-ray burst that occurred ...

Pulsar survey could help find gravitational waves

Aug 24, 2010

With a recently announced $6.5 million grant over five years from the National Science Foundation (NSF), an international consortium of researchers and institutions hopes to find and use the galaxy's most precise pulsars ...

LIGO once again looking for gravitational waves

Mar 03, 2006

The quest to detect and study gravitational waves with the National Science Foundation-funded Laser Interferometer Gravitational-Wave Observatory, or LIGO, is on again. LIGO is currently conducting its first sustained observational ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

22 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

22 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

2.3 / 5 (6) May 27, 2011
These detectors are salary generators and a complete waste of public money. Gravitational waves indeed do exist, but they're manifesting like notoriously known CMBR noise. As Eddington pointed out already before many years, gravitational waves do not have a unique speed of propagation. The speed of the alleged waves is coordinate dependent: a different set of coordinates yields a different speed of propagation and such waves would propagate like the noise.

Relativists use simplified form of Einstein field equations to derive gravitational waves, which are based on the Einstein's pseudo-tensor. They do this because Einstein's field equations are highly non-linear (implicit actually) and impossible to solve analytically. However Hermann Weyl proved in 1944 already, that linearisation of the field equations implies the existence of a Einstein's pseudo-tensor that, except for the trivial case of being precisely zero, does not otherwise exist:

not rated yet May 28, 2011
My view:
1.If space is a continuum, the mathematics for the assertion of GWs are non existence.
2. If space is discrete, the mathematics for the assertions of GWs exist. (The "linearisation" you referenced)

I actually believe our wordings are exactly identical in meaning.

I am sure, if you do not share my view, you will be the first to let me know.

Simplifying further:

GR/Space Continuum vs. QM/Discrete Space

One is questioning discrete mathematics.
If linearizing continuous functions is sufficiently grounded mathematically. If not, the implication for the existence of Einstein's pseudo-tensor is without mathematical foundation.