The role of bacteria in weather events

May 24, 2011

Researchers have discovered a high concentration of bacteria in the center of hailstones, suggesting that airborne microorganisms may be responsible for that and other weather events. They report their findings today at the 111th General Meeting of the American Society for Microbiology in New Orleans.

"Bacteria have been found within the embryo, the first part of a hailstone to develop. The embryo is a snapshot of what was involved with the event that initiated growth of the hailstone," says Alexander Michaud of Montana State University in Bozeman, who presented the research.

Michaud and his colleagues analyzed hailstones over 5 centimeters in diameter that were collected on the University campus after a storm in June 2010. The large hailstones were seperated into 4 layers and the from each layer was analyzed. The number of culturable bacteria was found to be highest in the inner cores of the hailstone.

"In order for precipitation to occur, a nucleating particle must be present to allow for aggregation of ," says Michaud. "There is growing evidence that these can be bacteria or other ."

Michaud's research is part of a growing field of study focusing on bioprecipitation, a concept where bacteria may initiate rainfall and other forms of precipitation including snow and hail. The formation of in clouds, which is necessary for snow and most rainfall events, requires ice nuclei (IN), particles that the ice crystals can grow around.

" in clouds play key roles in the processes leading to precipitation due to their ability to serve as sites for . At temperatures warmer than -40 degrees Celsius ice formation is not spontaneous and requires an IN," says Brent Christner of Louisiana State University, also presenting at the meeting.

A diverse range of particles are capable of serving as IN, but the most active naturally occurring IN are biological in origin, capable of catalyzing ice formations at temperatures near -2 degrees Celsius. The most well-studied biological IN is the plant pathogen Psuedomonas syringae.

"Ice nucleating strains of P. syringae possess a gene that encodes a protein in their outer membrane that binds water molecules in an ordered arrangement, providing a very efficient nucleating template that enhances ice crystal formation," says Christner.

Aerosol-cloud simulation models imply that high concentrations of biological IN may influence the average concentration and size of ice crystals in clouds, horizontal cloud coverage in the free troposphere, precipitation levels at the ground and even insulation of the earth from solar radiation.

"Evidence for the distribution of biological IN in the atmosphere coupled with the warm temperatures at which they function as IN has implied that biological IN may play a role in the Earth's hydrological cycle and radiative balance," says Christner.

Explore further: Researchers find animals killed by anthrax leave behind enticing grasses for herbivores, allowing disease to spread

Provided by American Society for Microbiology

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Cloud formation affected by human activity, study says

Sep 12, 2006

University of Toronto researchers and their collaborators have discovered that solid ammonium sulphate aerosol – an airborne particle more prevalent in continental areas - can act as a catalyst to the formation of ice clouds, ...

It's raining pentagons

Mar 08, 2009

This week's Nature Materials (09 March 2009) reveals how an international team of scientists led by researchers at the London Centre for Nanotechnology (LCN) at UCL have discovered a novel one dimensional ice ch ...

Recommended for you

What happens when good genes get lost?

17 hours ago

Scientifically speaking, there is no bad DNA, though we like to blame it for unruly hair, klutziness or poor gardening skills. There is, however, junk DNA.

Plants prepackage beneficial microbes in their seeds

Sep 29, 2014

Plants have a symbiotic relationship with certain bacteria. These 'commensal' bacteria help the pants extract nutrients and defend against invaders – an important step in preventing pathogens from contaminating fruits and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

thewhitebear
not rated yet May 25, 2011
this is very interesting. could changes in land-use effect concentrations of biologicals in the atmosphere thus in turn impacting precipitation?