Robots, astronauts and asteroids

May 24, 2011 By Elizabeth Boyle
UD's Art Trembanis during a dive with the AUV. Credit: Alex Forrest

(PhysOrg.com) -- NASA has its sights set on asteroid exploration, which is just as tricky as it sounds. An asteroid has little gravitational force, which rules out walking on one. Anchoring to the surface is a solution, but because an asteroid comprises so many different materials even that is a challenge.

So how is the space agency planning for such a task? Earlier this month it sent teams underwater to prepare for a simulated mission to a near-Earth in October. The effort, coordinated by NASA’s Extreme Environment Mission Operations project, took place 3.5 miles off Key Largo, Fla., at the Aquarius Underwater Laboratory.

“An underwater habitat provides an environment where you have to consider life support, communication, food and supplies and near weightlessness, which is what the are going to encounter on this kind of object,” said Art Trembanis, University of Delaware assistant professor of geological sciences.

Trembanis, Doug Miller, associate professor of oceanography, and collaborator Alex Forrest of the University of California–Davis were on hand during the project’s first planning phase May 1–5, though they weren’t in the underwater habitat like the astronauts will be for their simulated mission. They worked from a surface vessel to deploy UD’s autonomous underwater vehicle (AUV), which uses cameras, sonar sensors and other instruments to gather all types of vital underwater information.

Their goal was to provide baseline mapping of the area and to determine what the terrain looks like, what is it made of, the available resources and the environmental conditions. All that information will help NASA experts planning the simulation mission make decisions such as what kind of wetsuits are needed or where to place an obstacle the astronauts will use to practice their asteroid-walking skills.

“Our role was to gather as much information as we could,” Trembanis said, “and to maximize the potential for exploration.”

They certainly accomplished that. Over four days the robot covered 62 miles and collected water quality parameters such as salinity, temperature and dissolved oxygen, and more than 12 hours of high-definition video and 85,000 images. Because the AUV is much more agile than the tethered robots previously used to scout the area around Aquarius, it was able to gather more information than ever before.

“Surface ships had a tough time because there’s a whole series of cables,” Trembanis explained. “The AUV allowed us to get in there.”

The team collected the information with funding from , but the data will have valuable ocean science uses as well. For instance, Trembanis said he plans to compare them with similar data collected for a Sea Grant-funded project that studies habitats around reef systems in Delaware Bay.

The endeavor also afforded some pretty unique opportunities for UD students. Graduate students Jonathan Gutsche and Bryan Keller helped deploy the AUV on its missions in Florida, and graduating geology major Lyle De La Rosa took part in the trip for his Discovery Learning Experience project. He helped process data and determine targets for exploration during the trip.

“It definitely was a really cool experience,” he said. “I’m gaining some amazing tools and knowledge that not a lot of people have in my major.”

Students back at UD also got in on the action. The researchers held two live class sessions with students watching on the large screens of the Department of Geological Sciences’ VAST Lab. It was an interactive, front-row seat.

“We were sending back snippets of our HD video and our data,” Trembanis said. “It was rewarding to be able to bring them that minutes-old data.”

Even better, Trembanis was able to sign off from class one of the days by doing a back roll off the boat into a dive.

“Any day you an end class with a dive is a good day,” he said with a smile.

Explore further: Student science projects explode with rocket

add to favorites email to friend print save as pdf

Related Stories

King of the (lunar) road

Mar 30, 2011

The University of Alabama in Huntsville’s moon buggy may not go from 0 to 60 in five seconds, but it can handle the lunar regolith like nobody’s business. And that’s no small feat, says mechanical ...

Scheduling the unknown

May 16, 2011

How can the exploration of a Canadian lake, using deep-water submersibles, help NASA plan for the human exploration of Mars?

Recommended for you

Cassini sees sunny seas on Titan

9 hours ago

(Phys.org) —As it soared past Saturn's large moon Titan recently, NASA's Cassini spacecraft caught a glimpse of bright sunlight reflecting off hydrocarbon seas.

Is space tourism safe or do civilians risk health effects?

12 hours ago

Several companies are developing spacecraft designed to take ordinary citizens, not astronauts, on short trips into space. "Space tourism" and short periods of weightlessness appear to be safe for most individuals ...

An unmanned rocket exploded. So what?

15 hours ago

Sputnik was launched more than 50 years ago. Since then we have seen missions launched to Mercury, Mars and to all the planets within the solar system. We have sent a dozen men to the moon and many more to ...

NASA image: Sunrise from the International Space Station

16 hours ago

NASA astronaut Reid Wiseman posted this image of a sunrise, captured from the International Space Station, to social media on Oct. 29, 2014. Wiseman wrote, "Not every day is easy. Yesterday was a tough one. ...

Copernicus operations secured until 2021

16 hours ago

In a landmark agreement for Europe's Copernicus programme, the European Commission and ESA have signed an Agreement of over €3 billion to manage and implement the Copernicus 'space component' between 2014 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.