Controlling robotic arms is child's play

May 13, 2011
The robotic arm can be controlled with an input device. When the hand holding the device is moved, the robot emulates the movement. Credit: Fraunhofer IPA

Move your arm and the robot imitates your movement. This type of intuitive handling is now possible thanks to a new input device that will simplify the control of industrial robots in the future. But that is not all: The sensor system can also help regulate the movements of active prostheses. The new technology will be presented at the Sensor+Test trade fair from June 7-9 in Nuremberg.

Catching a ball is no problem for most people. Getting a to catch a ball using a catcher attachment is a bit trickier. To find out just how tricky it is – or to see if it's easier than they think – visitors to the Sensor+Test trade fair in Nuremberg should head for the Fraunhofer booth, Booth 202 in Hall 12. There, researchers will be presenting an industrial robotic arm with six joints, at the end of which is a catcher. Visitors can control the arm using a hand-held input device: When they move the hand holding the device, the robot emulates their movement. "The input device contains various movement sensors, also called inertial sensors," says Bernhard Kleiner of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, who leads the project. The individual micro-electromechanical systems themselves are not expensive. What the scientists have spent time developing is how these sensors interact. "We have developed special algorithms that fuse the data of individual sensors and identify a pattern of movement. That means we can detect movements in free space," summarizes Kleiner.

What may at first appear to be a trade show gimmick, is in fact a technology that offers numerous advantages in industrial production and logistical processes. The system could be used to simplify the programming of , for example. To date, this has been done with the aid of laser tracking systems: An employee demonstrates the desired motion with a hand-held baton that features a white marker point. The system records this motion by analyzing the light reflected from a laser beam aimed at the marker. Configuring and calibrating the system takes a lot of time. The new input device should eliminate the need for these steps in the future – instead, employees need only pick up the device and show the what it is supposed to do.

The system has numerous applications in medicine, as well. Take, for example, gait analysis. Until now, cameras have made precise recordings of patients as they walk back and forth along a specified path. The films reveal to the physician such things as how the joints behave while walking, or whether incorrect posture in the knees has been improved by physical therapy. Installing the cameras, however, is complex and costly, and patients are restricted to a predetermined path. The new can simplify this procedure: Attached to the patient's upper thigh, it measures the sequences and patterns of movement – without limiting the patient's motion in any way. "With the inertial sensor system, gait analysis can be performed without a frame of reference and with no need for a complex camera system," explains Kleiner. In another project, scientists are already working on comparisons of patients' gait patterns with those patterns appearing in connection with such diseases as Parkinson's.

Another medical application for the is the control of active prostheses containing numerous small actuators. Whenever the patient moves, the prosthesis in turn also moves; this makes it possible for a leg prosthesis to roll the foot while walking. Here, too, the sensor could be attached to the patient's upper thigh and could analyze the movement, helping to regulate the motors of the prosthesis. Research scientists are currently working on combining the inertial sensor system with an electromyographic (EMG) sensor. Electromyography is based on the principle that when a muscle tenses, it produces an electrical voltage which a sensor can then measure by way of an electrode. If the sensor is placed, for example, on the muscle responsible for lifting the patient's foot, the sensor registers when the patient tenses this muscle – and the prosthetic foot lifts itself. EMG sensors like this are already available but are difficult to position. "While standard EMG sensors consist of individual electrodes that have to be positioned precisely on the muscle, our system is made up of many small electrodes that attach to a surface area. This enables us to sense muscle movements much more reliably," says Kleiner.

Explore further: Tricorder XPRIZE: 10 teams advance in global competition to develop consumer-focused diagnostic device

add to favorites email to friend print save as pdf

Related Stories

Organized chaos gets robots going (Update)

Jan 17, 2010

(PhysOrg.com) -- Even simple insects can generate quite different movement patterns with their six legs. The animal uses various gaits depending on whether it crawls uphill or downhill, slowly or fast. Scientists ...

How to help heal an injured joint

Mar 18, 2011

Knee patients need patience: injuries to these joints take weeks to heal. Fraunhofer researchers have now developed a system that documents the healing process in detail. This motivates patients and at the same time helps ...

Sensors that can stretch

May 11, 2011

Is someone sitting in the passenger seat of the car? Did someone enter the safety zone in front of an industrial machine? Stretch and pressure sensors have a wide range of applications. Researchers have now ...

Magnetic Sensor That Brooks No Interference

Jun 03, 2008

Sensors accurately register the slightest temperature fluctuations, the tiniest changes to a magnetic field, or barely perceptible air currents. In some cases, however, there are limits to their accuracy – ...

Bionic leg undergoing clinical trials

Apr 22, 2011

(Medical Xpress) -- A "bionic" leg designed for people who have lost a lower leg is undergoing clinical trials sponsored by the US Army. The researchers hope the leg will be able to learn the patient's nerve signal patterns ...

Computer-generated robots

Nov 29, 2010

'Genetic Robots' are moving robots that can be created fully automatically. The robot structures are created using genetic software algorithms and additive manufacturing. At the Euromold trade fair in Frankfurt, ...

Recommended for you

Augmented reality helps in industrial troubleshooting

Aug 28, 2014

At a "smart" factory, machines reveal a number of data about themselves. Sensors measuring temperature, rotating speed or vibrations provide valuable information on the state of a machine. On this basis, ...

User comments : 0