Radical new Intel transistor based on UC Berkeley's FinFET

May 25, 2011 By Karen Rhodes

(PhysOrg.com) -- On May 4, 2011, Intel Corporation announced what it called the most radical shift in semiconductor technology in 50 years. A new three-dimensional transistor design will enable the production of integrated-circuit chips that operate faster with less power. Intel’s 3-D Tri-Gate transistor will be used in 22-nanometer-technology microprocessors slated for high-volume manufacturing by the end of the year.

Intel’s breakthrough has its roots in research started in 1997 in the College of Engineering at the University of California, Berkeley. That year, a team led by professors Chenming Hu, Jeff Bokor and Tsu-Jae King Liu of the department of electrical engineering and computer sciences took up the challenge of building a transistor smaller than 25 nanometers, 10 times smaller than those in production at the time. Their work was supported by the U.S. Defense Advanced Research Projects Agency (DARPA).

In 1999, the researchers reported a new 3-D transistor structure and gave it its widely known name FinFET. The term describes a Field Effect Transistor (FET) formed in a narrow silicon “fin” that rises above the surface of the . By going up, the design overcame the limitations of a flat transistor, which allows current flow to be controlled only from the top surface of the silicon channel. In contrast, current flow through a fin-shaped silicon channel can be controlled from its side surfaces, which is more effective.

Hu explains, “An analogy is to think of this channel like a vein. If you want to stop bleeding, you would pinch the vein from both sides. This would be much better than just pressing from one side.”

Further FinFET research at UC Berkeley was supported by Intel, IBM, Texas Instruments, AMD, Motorola and UMC through the Semiconductor Research Corporation, as well as DARPA.

In 2000, the Berkeley researchers predicted that FinFET technology could be scaled down to at least 10 nanometers and estimated that it would take about 10 years for the new transistor to move into high-volume production.

In its May 2011 announcement of the 3-D Tri-Gate transistor, Intel is introducing a major technical breakthrough in integrated circuit technology. The combination of performance improvement and power reduction is slated to enable innovations across a range of products, from the smallest handheld devices to powerful cloud-based computing servers.

“Scientists have long recognized the potential benefits of 3-D multi-gate transistor structures for continuing the pace of Moore’s Law,” said Mark Bohr, Intel senior research fellow. “The DARPA-sponsored Berkeley work in the 1990s, as well as earlier publications, and then Intel internal research in the 2000s contributed to developing increased confidence that multi-gate would one day be the next step in transistor evolution. Academics, industry and society as a whole benefit from the mutual exchange of ideas. Both and Berkeley can take pride in the fruits of university–industry partnership in research.”

Explore further: Quick-change materials break the silicon speed limit for computers

add to favorites email to friend print save as pdf

Related Stories

Intel Researchers Improve Tri-Gate Transistor

Jun 13, 2006

Intel Corporation researchers today disclosed they have developed new technology designed to enable next era in energy-efficient performance. Intel's research and development involving new types of transistors ...

Intel and QinetiQ Collaborate On Transistor Research

Feb 09, 2005

The results of a two-year joint research programme by Intel Corporation and QinetiQ into new transistor technology that could become a promising candidate for making microprocessors in the middle of the next decade was made ...

Recommended for you

Oculus unveils new prototype VR headset

Sep 20, 2014

Oculus has unveiled a new prototype of its virtual reality headset. However, the VR company still isn't ready to release a consumer edition.

Wireless sensor transmits tumor pressure

Sep 20, 2014

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Tim Cook puts personal touch on iPhone 6 launch

Sep 20, 2014

Apple chief Tim Cook personally kicked off sales of the iPhone 6, joining in "selfies" and shaking hands with customers Friday outside the company's store near his Silicon Valley home.

User comments : 0