Protein keeps sleep-deprived flies ready to learn

May 05, 2011

(PhysOrg.com) -- A protein that helps the brain develop early in life can fight the mental fuzziness induced by sleep deprivation, according to researchers at Washington University School of Medicine in St. Louis.

"It's interesting that NOTCH, a protein that plays such a prominent role in development, also has important functions in the adult brain," says senior author Paul Shaw, PhD, associate professor of . "To our surprise, we found if NOTCH activity is boosted in the brains of sleep-deprived fruit , the flies can continue to stay sharp and learn after . They behave as if they had a full night's sleep."

Shaw studies interactions between sleep and learning to develop treatments that help the brain resist the mental impairments imposed by sleep deprivation. He wants to assist people forced to work with minimal sleep, such as members of the military or disaster relief workers.

The findings appear online May 5 in .

Shaw and his colleagues test flies' ability to learn by pairing a negative stimulus (the chemical quinine, which flies prefer to avoid) with a positive stimulus (a light, which flies instinctively seek). When offered an opportunity to enter a darkened tube or a lighted tube with quinine, flies that can learn suppress their natural desire to choose the light. Flies, like humans, show a progressive decline in during the course of a typical waking day. Prolonged disruption of sleep causes a much sharper drop in learning.

Shaw became interested in NOTCH when his group found that sleep deprivation in flies caused increased activity in a gene that suppresses NOTCH. They found a similar increase in humans following . They went on to show that when that suppressor is genetically disabled, allowing increased NOTCH activity, flies continue to learn even when sleep-deprived.

To further confirm NOTCH's involvement in these processes, Shaw and lead author Laurent Seugnet, PhD, a researcher now at the Lyon Neuroscience Research Center in Lyon, France, analyzed where NOTCH is made in the brain. They found that in adult fruit flies, specialized brain cells known as glia make NOTCH. Scientists have typically regarded glia as passive support cells that merely nourish and supply neurons, the cells that do the "work" of the . According to Shaw, though, this study and others have scientists reconsidering how actively glia may be involved in certain mental processes, including sleep.

"We may want to target glia to reduce or slow the cognitive deficits associated with increased wakefulness, allowing people such as emergency personnel and air traffic controllers to stay awake and functional for extended periods of time," Shaw says. "If modifying glia can slow negative outcomes associated with prolonged wakefulness, that may provide us with a more natural way of helping people stay awake than directly targeting neurons."

Explore further: Danish museum discovers unique gift from Charles Darwin

More information: Seugnet L, Suzuki Y, Merlin G, Gottschalk L, Duntley SP, Shaw PJ. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Current Biology, May 5, 2011.

Related Stories

Brain tweak lets sleep-deprived flies stay sharp

Jul 31, 2008

Staying awake slows down our brains, scientists have long recognized. Mental performance is at its peak after sleep but inevitably trends downward throughout the day, and sleep deprivation only worsens these effects.

Dementia induced and blocked in Parkinson's fly model

Aug 01, 2009

Parkinson's disease is well-known for impairing movement and causing tremors, but many patients also develop other serious problems, including sleep disturbances and significant losses in cognitive function known as dementia.

Starvation keeps sleep-deprived fly brain sharp

Aug 31, 2010

As anyone who has ever struggled to keep his or her eyes open after a big meal knows, eating can induce sleepiness. New research in fruit flies suggests that, conversely, being hungry may provide a way to stay awake without ...

Insomniac flies resemble sleep-deprived humans

Jun 02, 2009

Researchers at Washington University School of Medicine in St. Louis have created a line of fruit flies that may someday help shed light on the mechanisms that cause insomnia in humans. The flies, which only get a small fraction ...

Searching for shut eye: Study identifies possible sleep gene

Jul 29, 2008

While scientists and physicians know what happens if you don't get six to eight hours of shut-eye a night, investigators have long been puzzled about what controls the actual need for sleep. Researchers at the University ...

New research sheds light on fly sleep circuit

Nov 26, 2008

In a novel study appearing this week in Neuron, Brandeis researchers identify for the first time a specific set of wake-promoting neurons in fruit flies that are analogous to cells in the much more complex sleep circuit in hum ...

Recommended for you

Danish museum discovers unique gift from Charles Darwin

18 hours ago

The Natural History Museum of Denmark recently discovered a unique gift from one of the greatest-ever scientists. In 1854, Charles Darwin – father of the theory of evolution – sent a gift to his Danish ...

Top ten reptiles and amphibians benefitting from zoos

21 hours ago

A frog that does not croak, the largest living lizard, and a tortoise that can live up to 100 years are just some of the species staving off extinction thanks to the help of zoos, according to a new report.

User comments : 0