Researchers develop platform to monitor hematopoietic stem cells

May 22, 2011

A Canadian research team has developed an automated microfluidic cell culture platform to monitor the growth, survival and responses of hundreds of hematopoietic stem cells (HSCs) at the single cell level.

This new tool allows scientists to study multiple temporally varying culture conditions simultaneously and to gain new insights on the growth factor requirements for HSC survival.

"The ability to perform massively parallel cultures of single non-adherent will provide new avenues to explore complex biological questions," says Véronique Lecault, lead author of the study and a PhD candidate in the UBC Dept. of Chemical and Biological Engineering.

"Our results will find use in broader applications such as drug development, clone selection and culture optimization," says Lecault.

The findings appear in the May 22 issue of the online journal Nature Methods. The study is a collaborative project between the laboratories of Asst. Prof. Carl Hansen, UBC Physics and Astronomy, Centre for High-Throughput Biology, Prof. James Piret, UBC Chemical and Biological Engineering, Michael Smith Laboratories, Prof. Connie Eaves, Terry Fox Laboratory, BC Cancer Agency, and Dr. Keith Humphries, Terry Fox Laboratory, BC Cancer Agency.

Lecault explains that HSCs are found mainly in adult bone marrow and have the astounding ability to sustain the continuous production of specialized blood cells.

These cells have major clinical implications, in particular for the treatment of cancer and blood-borne diseases, but the mechanisms regulating their division into (self-renewal) or more mature cells (differentiation) are not very well understood.

The heterogeneous nature of hematopoietic populations further complicates the study of these rare HSCs by hiding individual responses into average measurements. Single cell studies are therefore critical to elucidate these mechanisms but current techniques are labour intensive, require expensive reagents and provide limited flexibility to characterize cells or exchange culture conditions.

The team designed and fabricated devices -- about the size of a matchbox -- containing 1,600 to 6,400 miniature culture chambers that can sustain robust cell growth, along with an automated time-lapse imaging system to track clones over multiple days as they expand from single cells.

"There are many challenges associated with the culture of suspension in nanolitre volumes including dehydration, nutrient limitations, and rapid variations if culture conditions are not well controlled," says Lecault.

The team was able to solve these problems by integrating an osmotic bath to block evaporation combined with a unique geometry that allows for automated medium exchange, immunostaining on live clones and cell recovery.

Explore further: Regulating hematopoietic stem cell homeostasis and leukemogenesis

Related Stories

Protein key to control, growth of blood cells

August 13, 2008

New research sheds light on the biological events by which stem cells in the bone marrow develop into the broad variety of cells that circulate in the blood. The findings may help improve the success of bone marrow transplants ...

Tackling blood stem cell heterogeneity

April 26, 2010

Distinct populations of hematopoietic stem cells (HSCs) that preferentially generate specific types of blood cells can be identified based on abundance of a single surface protein, according to a study published online on ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.