Paper announces discovery of one of earliest minerals formed in solar system

May 06, 2011

In the May-June issue of the journal American Mineralogist, a team of scientists announced the discovery of the new mineral krotite, one of the earliest minerals formed in our solar system. It is the main component of an unusual inclusion embedded in a meteorite (NWA 1934), found in northwest Africa. These objects, known as refractory inclusions, are thought to be the first planetary materials formed in our solar system, dating back to before the formation of the Earth and the other planets.

This particular grain is known affectionately as "Cracked Egg" for its distinctive appearance. Dr. Harold C. Connolly, Jr. and student Stuart A. Sweeney Smith at the City University of New York (CUNY) and the American Museum of Natural History (AMNH) first recognized the grain to be of a very special type, known as a calcium-aluminum-rich refractory inclusion. ("Refractory" refers to the fact that these grains contain minerals that are stable at very high temperature, which attests to their likely formation as very primitive, high-temperature condensates from the solar nebula.)

Cracked Egg refractory inclusion was sent to Dr. Chi Ma at California Institute of Technology (Caltech) for very detailed nano-mineralogy investigation. Dr. Ma then sent it to Dr. Anthony Kampf, Curator of Mineral Sciences at the Natural History Museum of Los Angeles County (NHM), for X- ray diffraction study. Kampf's findings, confirmed by Ma, showed the main component of the grain was a low-pressure calcium (CaAl2O4) never before found in nature. Kampf's determination of the in the mineral showed it to be the same as that of a man-made component of some types of refractory (high-temperature) concrete.

What insight can we get from knowing that a common man-made component of modern concrete is found in nature only as a very rare component of a grain formed more than 4.5 billion years ago? Such investigations are essential in deciphering the origins of our . The creation of the man-made compound requires temperature of at least 1,500°C (2,732°F). This, coupled with the fact that the compound forms at low pressure, is consistent with krotite forming as a refractory phase from the . Therefore, the likelihood is that krotite is one of the first minerals formed in our solar system.

Studies of the unique Cracked Egg refractory inclusion are continuing, in an effort to learn more about the conditions under which it formed and subsequently evolved. In addition to krotite, the Cracked Egg contains at least eight other minerals, including one other new to science.

Explore further: Innovative use of pressurant extends MESSENGER's mission, enables collection of new data

More information: The American Mineralogist paper is entitled "Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite."

Provided by Natural History Museum of Los Angeles County

4.8 /5 (8 votes)

Related Stories

First measurement of the age of cometary material

Feb 25, 2010

(PhysOrg.com) -- Though comets are thought to be some of the oldest, most primitive bodies in the solar system, new research on comet Wild 2 indicates that inner solar system material was transported to the ...

Stardust Findings May Alter View of Comet Formation

Mar 14, 2006

Samples from comet Wild 2 have surprised scientists, indicating the formation of at least some comets may have included materials ejected by the early sun to the far reaches of the solar system.

Scientists analyse solar wind from moon rock

Apr 10, 2006

Australian National University scientists preparing for the analysis of solar wind samples from NASA’s Genesis mission believe they have already measured solar wind particles in an analysis of lunar soil.

One-of-a-kind meteorite unveiled

Apr 22, 2006

The depths of space are much closer to home following the University of Alberta's acquisition of a meteorite that is the only one of its kind known to exist on Earth! What makes it so rare? The meteorite is 'pristine' – ...

Recommended for you

The top 101 astronomical events to watch for in 2015

Dec 24, 2014

Now in its seventh year of compilation and the second year running on Universe Today, we're proud to feature our list of astronomical happenings for the coming year. Print it, bookmark it, hang it on your ...

NASA image: Frosty slopes on Mars

Dec 24, 2014

This image of an area on the surface of Mars, approximately 1.5 by 3 kilometers in size, shows frosted gullies on a south-facing slope within a crater.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
5 / 5 (1) May 06, 2011
Congratulations on this discovery.

Is there any radiogenic evidence (decay products of extinct Al-26, Pu-244, Ca-41, etc) that the grain formed early?

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.