What decides neural stem cell fate?

May 05, 2011

Researchers at Sanford-Burnham Medical Research Institute and their collaborators found that expression of a gene called SOX2 maintains the potential for neural crest stem cells to become neurons in the peripheral nervous system. Their results, published online May 5 by the journal Cell Stem Cell, could help better inform therapies aimed at neurocristopathies, diseases caused by defects in the neural crest.

Early in , the neural crest – a transient group of – gives rise to parts of the and several other tissues. But little is known about what determines which cells become neurons and which become other cell types. A team led by Dr. Alexey Terskikh at Sanford-Burnham Medical Research Institute (Sanford-Burnham) recently found that expression of a gene called SOX2 maintains the potential for neural crest stem cells to become neurons in the , where they interface with muscles and other organs. Their results, published online May 5 by the journal Cell Stem Cell, could help better inform therapies aimed at neurocristopathies, diseases caused by defects in the neural crest or neurons, which include microphthamia and CHARGE syndrome.

The SOX2 gene encodes a transcription factor, a type of protein that switches other genes on or off. SOX2 is one of two key genes researchers use to generate induced pluripotent stem cells (iPSCs), which are capable of differentiating into all cell types for research and potential therapeutic applications.

"In this study, we looked at SOX2's role in cells of the system and discovered that it's required to sustain multipotency – the ability to differentiate into several cell types in the peripheral nervous system, including neurons and glia," explained Dr. Terskikh, assistant professor in Sanford-Burnham's Del E. Webb Neuroscience, Aging and Stem Cell Research Center.

Using an embryonic stem cell model, Dr. Terskikh and colleagues showed that stem cells in the developing nervous system start out with SOX2, but lose it at the stage when they are considered migratory neural crest cells. Later, as neural crest stem cells aggregate at a subsequent point in development, SOX2 is regained only by those cells fated to become neurons. Neural crest stem cells that remain SOX2-free differentiate into other , but never become neurons.

To determine how SOX2 controls this stage in nervous system development, the researchers looked at the genes it acts upon. They found that SOX2 switches on neurogenin-1 and Mash-1, two genes that support neuronal survival in both the central and peripheral nervous systems.

"If we prevent neural crest stem cells from re-expressing SOX2, we don't get neurons. If we try to push these SOX2-deficient cells to become , they die, but they can readily give rise to glia or smooth muscle cells," Dr. Terskikh said. "We think that one function of SOX2 is to keep cells multipotent or pluripotent for one reason – if they need to become a neuron later in development. We hope this finding will be useful to researchers studying development and stem cell differentiation."

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

More information: Cimadamore F, Fishwick K, Giusto, Gnedeva K, Cattarossi G, Miller A, Pluchino S, Brill LM, Bronner-Fraser M, Terskikh AV. Human ESC-Derived Neural Crest Model Reveals A Key Role For SOX2 In Sensory Neurogenesis. Cell Stem Cell. May 5, 2011.

Provided by Sanford-Burnham Medical Research Institute

5 /5 (1 vote)

Related Stories

BERT and ERNI proteins control brain development

Jan 08, 2008

Scientists at University College London have discovered how two proteins ­called BERT and ERNI interact in embryos to control when different organ systems in the body start to form, deepening our understanding of the development ...

Identification of a novel neural stem cell type

Jan 14, 2008

As published in the upcoming issue of G&D, sesearchers from the Sloan-Kettering Institute, led by Dr. Lorenz Studer, have discovered a novel type of neural stem cell, which has a broader differentiation potential than previously ...

Recommended for you

Japanese scientist resigns over stem cell scandal

17 hours ago

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.