NASA selects University of Arizona to lead sample return mission to asteroid

May 25, 2011
OSIRIS-REx will rendezvous with asteroid 1999 RQ36, extend a sample collecting device and return at least 60 grams (a little over 2 ounces) of pristine material to Earth for analysis. Credit: NASA/GSFC/The University of Arizona

NASA has selected the University of Arizona to lead a sample-return mission to an asteroid. The team is led by Michael Drake, director of the the UA's Lunar and Planetary Laboratory. NASA Goddard Space Flight Center in Greenbelt, Md. will manage the mission for NASA. Lockheed Martin will build the spacecraft.

The OSIRIS-REx mission is budgeted for approximately $800 million, excluding the .

The target asteroid – named 1999 RQ36 after the year it was discovered – measures 575 meters (one-third of a mile) in diameter. 1999 RQ36 is a time capsule from the early solar system rich with organic compounds that may have seeded life on Earth.

"OSIRIS-REx will explore our past and help determine our destiny," said Drake. "It will return samples of pristine organic material that scientists think might have seeded the sterile early Earth with the building blocks that led to life. Such samples do not currently exist on Earth. OSIRIS-REx will also provide the knowledge that will guide humanity in deflecting any future asteroid that could collide with Earth, allowing humanity to avoid the fate of the dinosaurs."

OSIRIS-REx stands for Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer.

Scheduled for launch in 2016, the OSIRIS-REx mission will return the first samples ever taken from a special type of asteroid holding clues to the origin of the solar system and likely organic molecules that may have seeded life on Earth.

OSIRIS-REx also will investigate an object potentially hazardous to humanity. 1999 RQ36 has a one-in-1,800 chance of impacting the Earth in the year 2182.

Spending longer than a year exploring 1999 RQ36 before acquiring samples, OSIRIS-REx will provide geologic context essential to expanding our understanding of the asteroid-comet continuum. The mission will provide near-live coverage of 1999 RQ36 operations and sample return to Earth. Samples will return to Earth in the year 2023.

The return to Earth of pristine samples with known geologic context will enable precise analyses that cannot be duplicated by spacecraft-based instruments. Pristine carbonaceous materials have never before been analyzed in laboratories on Earth.

The OSIRIS-REx instrument suite will include: the OSIRIS-REx Camera Suite (OCAMS) by the University of Arizona; the OSIRIS REx Visible-Infrared Spectrometer (OVIRS) instrument by Goddard; the OSIRIS-REx Thermal Emission Spectrometer (OTES) by Arizona State University; and the OSIRIS-REx Laser Altimeter (OLA) by the Canadian Space Agency.

The team includes the University of Arizona, NASA Goddard Space Flight Center, , Arizona State University, KinetX, the Canadian Space Agency, NASA Johnson Space Center, NASA Ames Research Center, NASA Langley Research Center, along with science team members from across academia.

NASA New Frontiers is a program to explore the solar system with frequent, medium-class missions that will conduct high-quality, focused scientific investigations designed to enhance our understanding of the solar system.

"OSIRIS-REx will usher in a new era of planetary exploration," said Dante Lauretta, the mission's deputy principal investigator and an associate professor at the UA's Lunar and . "For the first time in space-exploration history, a mission will travel to, and return pristine samples of a carbonaceous asteroid with known geologic context. Such samples are critical to understanding the origin of the , Earth, and life."

"OSIRIS-REx will have an extraordinary impact on the University of Arizona and our entire state," said UA President Robert N. Shelton. "For decades, our Lunar and Planetary Laboratory has made immeasurable contributions to our knowledge of the universe. This mission will continue and advance that tradition, with unique opportunities for our students and researchers."

Extensive characterization by the Arecibo Planetary Radar System, the Spitzer Space Telescope, and ground-based telescopes in Arizona and elsewhere have resulted in exceptional knowledge about the asteroid. 1999 RQ36 orbits the sun every 1.2 years, crossing the Earth's orbit every September. Its shape and rotation rate are well known, allowing OSIRIS-REx to make a safe, albeit short, touchdown.

"Our spacecraft will sneak up to RQ36 over the course of weeks," Lauretta said. "Once the two objects are traveling in sync, OSIRIS-REx will extend its sample collector, touch the surface for five seconds, collect well over 60 grams of sample, and get out of there."

Using an injection of ultra pure nitrogen, the OSIRIS-REx sample-collecting device will stir up dirt and small gravel to be captured and sealed for return to Earth. The samples are returned to the surface of the Earth using hardware and procedures successfully demonstrated on the Stardust mission, which returned samples from comet Wild 2 in 2006.

UA planetary science professor William Boynton is the mission instrumentation scientist, and Peter Smith, a professor in the UA's Lunar and Planetary Laboratory and principal investigator on the Phoenix Mars Mission, is the instrument scientist for the three on-board cameras. Heather Enos, project manager for the TEGA instrument on Phoenix, serves as the project planning and control officer. Chris Shinohara, science operations manager for the Phoenix Mission, will perform a similar role for OSIRIS-REx.

All mission science operations will be performed on the UA campus. Anna Spitz from the Mt. Lemmon Sky Center leads the Education and Public Outreach program. In addition to outstanding science and educational opportunities, OSIRIS-REx will provide a significant boost to the Arizona economy; approximately $200 million will be spent in Tucson and across Arizona.

Explore further: SpaceX cargo capsule nears International Space Station

add to favorites email to friend print save as pdf

Related Stories

ASU instrument plays key role in NASA mission

Jan 06, 2010

(PhysOrg.com) -- An instrument designed at Arizona State University to identify and map the minerals on the surface of an asteroid is a key element in a new NASA mission-concept. Philip Christensen, in the School of Earth ...

The Moon and Europe -- Rosetta OSIRIS images

Nov 16, 2007

As Rosetta closed in on Earth, swung by and then left on its course again, several instruments on the spacecraft were busy taking snaps. As it swung away, the OSIRIS camera also caught glimpses of the Moon.

Steins: A diamond in the sky

Sep 08, 2008

(PhysOrg.com) -- The first images from Rosetta's OSIRIS imaging system and VIRTIS infrared spectrometer were derived from raw data this morning and have delivered spectacular results.

Recommended for you

Getting to the root of the problem in space

10 hours ago

When we go to Mars, will astronauts be able to grow enough food there to maintain a healthy diet? Will they be able to produce food in NASA's Orion spacecraft on the year-long trip to Mars? How about growing ...

The difference between CMEs and solar flares

12 hours ago

This is a question we are often asked: what is the difference between a coronal mass ejection (CME) and a solar flare? We discussed it in a recent astrophoto post, but today NASA put out a video with amazing graphics that explain ...

Scientific instruments of Rosetta's Philae lander

13 hours ago

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

spectator
1 / 5 (2) May 25, 2011
Using an injection of ultra pure nitrogen, the OSIRIS-REx sample-collecting device will stir up dirt and small gravel to be captured and sealed for return to Earth.


How do they know it's a rubble pile asteroid, as opposed to a solid object?

This mission could be a complete waste of 800million+ if they are banking on just flying up to it and "sneezing" to make dust fly up.

Please, someone, tell me these people are smarter than that...I want to believe, but...

...oh, wait, they think life started from random accidents seeded by a meteor...they AREN'T smarter than that...
specpotater
5 / 5 (1) May 25, 2011
Really, look back at the article the other day that we can actually see a Cephid in the Andromeda galaxy. It is all a bunch of crap. I don't believe any of it. They just give all this money to their cronies and nothing important ever gets done.

I really want to believe but its because they aren't smarter that they do. TG's Wizard's First Rule - "People are stupid; they want to believe, so they do."

Random accidents and falling rocks starting life, REALLY? It just doesn't make anysense. It is all laid out for us in a book that some guy wrote who heard it straight from God. Why do they resist believing in the True Word?