Nanostructures improve solar cell efficiency

May 26, 2011 by Annette Ostrand

To make solar cells a competitive alternative to other renewable energy sources, researchers are investigating different alternatives. A step in the right direction is through new processes that change the surfaces of silicon solar cells. By creating different nanostructures on the surfaces, the energy harvesting properties of solar cells can be improved.

Within the EU-funded research project N2P ( To Production) researchers work on nanostructured surfaces of solar cells. At the Fraunhofer Institute in Dresden, Germany, researchers have focused on the development of plasma chemical etching (AP-PCE) processes. This technology is as an alternative to the wet chemical processing approach, used in the . The advantages of AP-PCE over the etching technology based on wet chemical processing are, for example, reduced chemical waste, cost efficiency and reduced handling. AP-PCE is used for modifying solar wafers’ surfaces down to the nanoscale. The researchers have achieved a one-percent improvement in solar cell efficiency, from 16 to 17 percent, by making the rear surface very smooth.

Within the N2P research project scientists at the Ecole Polytechnique Federale de Lausanne (EPFL) in Neuchatel, Switzerland, are instead working on improving different solar cells, the thin film silicon solar cells. Currently, these solar cells can only harvest about seven percent of the sunlight, which is about 40 percent less efficient compared to conventional wafer silicon cells. However, the thin film solar cells are cheaper and more eco-friendly because their production demands less time, material and energy. The researchers in Switzerland are changing the top glass structure of the solar cell, by depositing a layer of nanosized crystals from a transparent conductive oxide (TCO) onto the glass. This layer gives a high scattering effect and the light beam generates more electrons when it travels a longer distance though the cell, which enhances the cell’s light absorption. The researchers have managed to achieve a 30 percent increase in efficiency in comparison with standard thin film solar cells.

Another process that could increase the efficiency of thin film , through changing the surface structures, includes ultrafast pulsed laser irradiation. Researchers at Singapore Institute of Manufacturing Technology have shown that this irradiation makes a nanospike pattern on the silicon surface which reduces reflection of the light from the surface. More light will therefore be absorbed.

New processes which create nanostructured surfaces are improving solar cell efficiency substantially. With lower manufacturing costs in the future the interest in solar cell investments may increase impressively.

Explore further: Researchers make magnetic graphene

add to favorites email to friend print save as pdf

Related Stories

Nano-tuned solar cells

May 18, 2011

Solar cells that are more effective and cost less in production: Within the EU-project N2P (Nano to Product) researchers developed nano tuned surfaces to gain both.

Recommended for you

Researchers use oxides to flip graphene conductivity

15 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

21 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.