Nanopillars significantly boost the power conversion efficiency of thin-film solar cells

May 30, 2011 By Lee Swee Heng
Schematic of the proposed silicon nanopillar-textured thin-film solar cell. Credit: 2011 IEEE

One of the major challenges in the world today is the energy crisis. The high demand and low supply of fossil fuel are driving up oil and food prices. Silicon-based solar cells are one of the most promising technologies for generating clean and renewable energy. Using these devices to convert just a fraction of the sunlight that hits the earth each day into electricity could drastically cut society’s dependence on fossil fuels. Unfortunately, however, high-grade silicon crystals demand great care during the manufacturing process, making the resulting high production cost one of the main obstacles in the road to commercialization.

One way to bring down the production cost of these is to deposit layers of silicon onto cheaper substrates such as plastic or glass. However, this approach has one drawback: silicon thin films have lower power conversion efficiencies than bulk silicon crystals because they absorb less light and contain more defects. Patrick Lo at the A*STAR Institute of Microelectronics and co-workers have now discovered an approach for increasing the power conversion efficiency of silicon thin films deposited on cheap substrates.

Low-grade silicon thin films suffer from one inherent problem: they cannot absorb photons whose wavelengths are larger than their film thickness. For instance, a standard, 800-nm-thick thin film may capture short-wavelength blue light, but will completely miss longer-wavelength red light. “To keep material costs low and improve light efficiency, the trick is to trap more photons, including those with medium wavelengths,” says Lo.

One way to trap more photons in the silicon thin film is to carve tiny silicon pillars—hundreds of nanometers in size—in the silicon surface (see image). Lo explains that the silicon nanopillars are like a forest of trees, in which light enters and cannot easily get out. “When light strikes the surface, it bounces a few more times along or inside the pillars before penetrating the bottom flat surface,” he says. “Each bouncing event increases the chances of photon absorption.”

Lo and co-workers used computer simulations to determine the best configuration for extracting electrical charges from the defect-ridden silicon films. They found that the upper portion of each pillar can be made extremely conductive by introducing large amounts of dopants. Lo and co-workers are now using these practical guidelines to engineer a prototype of this unique concept. “Working with nanostructures is a wonderful way to open paths that could overcome the limits set by conventional physics,” he notes.

Explore further: Solar cells made from polar nanocrystal inks show promising early performance

More information: Wong, S. M. et al. Design high-efficiency Si nanopillar-array-textured thin-film solar cell. IEEE Electron Device Letters 31, 335–337 (2010). dx.doi.org/10.1109/LED.2010.2040062

Provided by Agency for Science, Technology and Research (A*STAR)

4.5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Recommended for you

First direct observations of excitons in motion achieved

1 hour ago

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet May 30, 2011
"significantly boost the power conversion"
numbers, numbers, numbers
ricarguy
1 / 5 (3) May 31, 2011
"Unfortunately, however, high-grade silicon crystals demand great care during the manufacturing process, making the resulting high production cost one of the main obstacles in the road to commercialization."

Not just great care, but great amount of energy to create a polycrystalline panel. I don't know the stats today, but a typical panel from several years ago took more energy to create and deploy than it was expected to "make" in its lifetime. So what's the energy "return on investment" today?

More news stories

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Shiny quantum dots brighten future of solar cells

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.