Nanoparticle boosted T-cells take on cancer

May 05, 2011 by Deborah Braconnier report

(PhysOrg.com) -- According to a study in Nature, Darrell Irvine from the Massachusetts Institute of Technology and his team members have found a way to boost the natural immune system when it comes to fighting cancer by arming them with interleukin-filled nanoparticles.

T-cells are a group of that works with the body’s . When cancerous cells are found within the body, swarm around to try and destroy the . However, many tumors will emit a chemical which works to weaken the T-cells, allowing the cancer to continue to grow.

Irvine’s team discovered that they were able to attach 100 nanoparticle capsules to a T-cell without affecting its function. The team then filled these capsules with interleukins. Interleukins are naturally made in the immune system and work as system regulators by keeping the T-cells fighting. By adding the additional interleukins, they increase the ability for the T-cells to push forward and attack the cancerous cells.

The team then injected these boosted T-cells into mice who were infected with bone and lung cancer. The T-cells immediately swarmed the cancerous cells and were able to stay functional for much longer than the traditional T-cells. In addition, mice treated with regular T-cells died from tumors within a month, while those treated with the boosted cells were had improving health.

Because these T-cells are being modified by the nanoparticles, there is no need for them to be genetically modified which is complex and costly. This process also has the potential to speed up clinical trials.

Explore further: Gold nanorods target cancer cells

More information: Therapeutic cell engineering with surface-conjugated synthetic nanoparticles, Nature Medicine 16, 1035–1041 (2010) doi:10.1038/nm.2198

Abstract
A major limitation of cell therapies is the rapid decline in viability and function of the transplanted cells. Here we describe a strategy to enhance cell therapy via the conjugation of adjuvant drug–loaded nanoparticles to the surfaces of therapeutic cells. With this method of providing sustained pseudoautocrine stimulation to donor cells, we elicited marked enhancements in tumor elimination in a model of adoptive T cell therapy for cancer. We also increased the in vivo repopulation rate of hematopoietic stem cell grafts with very low doses of adjuvant drugs that were ineffective when given systemically. This approach is a simple and generalizable strategy to augment cytoreagents while minimizing the systemic side effects of adjuvant drugs. In addition, these results suggest therapeutic cells are promising vectors for actively targeted drug delivery.

via Newscienctist

Related Stories

Strengthening the tumor-fighting ability of T cells

Mar 24, 2008

Researchers may have found a new way to promote immune cell attack on tumors. The new study, by a team of scientists in Milan, Italy, will be published online on March 24 in the Journal of Experimental Medicine.

Study: Tumors inhibit immune system

May 29, 2006

Seattle scientists have shown that tumors can manipulate the immune system to stop it from attacking cancer cells, said a study published in Nature Immunology.

Tumor wizardry wards off attacks from the immune system

Jul 14, 2006

Like the fictional wizard Harry Potter, some cancerous tumors seem capable of wrapping themselves in an invisibility cloak. Researchers at Washington University School of Medicine in St. Louis have found that pancreatic tumors ...

Ovarian cancer stem cells identified, characterized

Apr 17, 2008

Researchers at Yale School of Medicine have identified, characterized and cloned ovarian cancer stem cells and have shown that these stem cells may be the source of ovarian cancer’s recurrence and its resistance to chemotherapy.

Recommended for you

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.