Nano-FTIR-nanoscale infrared spectroscopy with a thermal source

May 9, 2011
Infrared nanospectroscopy with a thermal source. The tip is illuminated with the broadband infrared radiation from of a thermal source and the backscattered light is analyzed with a Fourier spectrometer, yielding local infrared spectra with a spatial resolution better than 100 nm. The displayed graph shows infrared spectra of differently processed oxides in an industrial semiconductor device. Credit: Copyright F. Huth, CIC nanoGUNE.

Researchers from the Basque nanoscience research center CIC nanoGUNE and Neaspec GmbH (Germany) have developed an instrument that allows for recording infrared spectra with a thermal source at a resolution that is 100 times better than in conventional infrared spectroscopy. In future, the technique could be applied for analyzing the local chemical composition and structure of nanoscale materials in polymer composites, semiconductor devices, minerals or biological tissue. The work is published in Nature Materials.

The absorption of is characteristic for the chemical composition and structure of materials. For this reason, an can be considered as a material's "fingerprint". Infrared spectroscopy has thus become an important tool for characterizing and identifying materials and is widely applied in different sciences and technologies including materials sciences and biomedical diagnostics. However, with conventional optical instruments, such as FTIR (Fourier Transform Infrared) infrared spectrometers, the light cannot be focused to spot sizes below several micrometers. This fundamental limitation prevents infrared-spectroscopic mapping of single nanoparticles, molecules or modern .

Researchers at nanoGUNE and Neaspec have now developed an that allows for nanoscale imaging with . The setup –in short nano-FTIR (see Figure) - is based on a scattering-type near-field microscope (NeaSNOM) that uses a sharp metallic tip to scan the topography of a sample surface. While scanning the surface, the tip is illuminated with the infrared light from a thermal source. Acting like an antenna, the tip converts the incident light into a nanoscale infrared spot (nanofocus) at the tip apex. By analyzing the scattered infrared light with a specially designed FTIR spectrometer, the researchers were able to record infrared spectra from ultra-small sample volumes.

In their experiments, the researchers managed to record infrared images of a semiconductor device from Infineon Technologies AG (Munich). "We achieved a spatial resolution better than 100 nm. This directly shows that thermal radiation can be focused to a spot size that is hundred times smaller than in conventional ", says FlorianHuth, who performed the experiments. The researcher demonstrated that nano-FTIR can be applied for recognizing differently processed silicon oxides or to measure the local electron density within complex industrial electronic devices. "Our technique allows for recording spectra in the near- to far-infrared spectral range. This is an essential feature for analyzing the chemical composition of unknown nanomaterials", explains Rainer Hillenbrand, leader of the Nanooptics group at nanoGUNE.

Nano-FTIR has interesting application potential in widely different sciences and technologies, ranging from semiconductor industry to nanogeochemistry and astrophysics. "Based on vibrational fingerprint spectroscopy, it could be applied for nanoscale mapping of chemical composition and structural properties of organic and inorganic nano-systems, including organic semiconductors, solar cells, nanowires, ceramics and minerals", adds FlorianHuth.

Explore further: Tension in the nanoworld: Infrared light visualizes nanoscale strain fields

Related Stories

Transmission lines for nanofocusing of infrared light

April 4, 2011

A joint cooperation between three research groups at nanoGUNE reports an innovative method to focus infrared light with tapered transmission lines to nanometer-size dimensions. This device could trigger the development of ...

Tension in the nanoworld

January 23, 2009

( -- A joint team of researchers at CIC nanoGUNE (San Sebastian, Spain) and the Max Planck Institutes of Biochemistry and Plasma Physics (Munich, Germany) report the non-invasive and nanoscale resolved infrared ...

Crystals in Nanofocus

August 31, 2004

Max Planck Scientists strike new paths in nanoanalysis and data storage with infrared light Scientists of the Nano-Photonics Group at the Max Planck Institute of Biochemistry have developed a new infrared-optical nanotechnology ...

Femtogram-level chemical measurements now possible

March 27, 2008

Finding a simple and convenient technique that combines nanoscale structural measurements and chemical identification has been an elusive goal. With current analytical instruments, spatial resolution is too low, signal-to-noise ...

Listening to ancient colors

September 2, 2010

A team of McGill chemists have discovered that a technique known as photoacoustic infrared spectroscopy could be used to identify the composition of pigments used in art work that is decades or even centuries old. Pigments ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.