Single molecule electronics and 'chemical soldering'

May 13, 2011 by Deborah Braconnier weblog
Single molecule electronics and 'chemical soldering'

(PhysOrg.com) -- Single molecule electronics is a division of nanotechnology utilizing single molecules as electronic components and its study has the ultimate goal of reducing the size of common electrical circuits. Since 1974, when Mark Ratner and Arieh Aviram from IBM first described how a single molecule was capable of working as a diode in passing current in one direction, research has moved forward in trying to develop a way to use single molecule electronics.

However, the biggest obstacle has been how to wire up this molecule to begin with. Researchers have tried connecting metal electrodes directly, as well as attempting to connect them with conductive polymers, both with little success.

However, according to a study published in the , it appears there may be a breakthrough. Yuji Okawa from the National Institute for Materials Science in Japan and his team have developed a way to bond and wire single molecules. Starting with a monomolecular film of diacetylene on graphite substrate, they deposit phthalocyanine to form nanoclusters. With a tip of a , they apply a pulsed voltage across the tip and the phthalocyanine surface which initiates a chain polymerization of the diacetylene, forming a polymer nanowire which then bonds to the phthalocyanine molecule.

Okawa now plans to test these phthalocyanine molecules as diodes, with the ultimate goal of creating a single molecule . While the idea of single molecule electronics hitting the market is still a long way off, this new discovery is a breakthrough and gives one step closer to its possibility.

Explore further: Single-Molecule Chemical-Field-Effect Transistor with Nanometer-Sized Gates

More information: Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry, J. Am. Chem. Soc., Article ASAP. DOI: 10.1021/ja111673x

Abstract
Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues. Relevant functional molecules are placed on a self-assembled monolayer of diacetylene compound. A probe tip of a scanning tunneling microscope is then positioned on the molecular row of the diacetylene compound to which the functional molecule is adsorbed, and a conductive polydiacetylene nanowire is fabricated by initiating chain polymerization by stimulation with the tip. Since the front edge of chain polymerization necessarily has a reactive chemical species, the created polymer nanowire forms chemical bonding with an encountered molecular element. We name this spontaneous reaction “chemical soldering”. First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. We demonstrate that two conductive polymer nanowires are connected to a single phthalocyanine molecule. A resonant tunneling diode formed by this method is discussed.

via RCS

Related Stories

Researchers 'wire' DNA to identify mutations

December 8, 2005

A team of ASU researchers led by Nongjian Tao and Peiming Zhang has developed a new, breakthrough technique for the detection of DNA mutations. Their results, published in the journal Proceedings of the National Academy ...

Researchers create molecular diode

October 13, 2009

Recently, at Arizona State University's Biodesign Institute, N.J. Tao and collaborators have found a way to make a key electrical component on a phenomenally tiny scale. Their single-molecule diode is described in this week's ...

Researchers create molecular diode

October 22, 2009

(PhysOrg.com) -- Recently, at Arizona State University’s Biodesign Institute, N.J. Tao and collaborators have found a way to make a key electrical component on a phenomenally tiny scale. Their single-molecule diode is described ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.