Molecular researchers discover novel gene linked to aging hearts

May 17, 2011

Researchers at the University of Ottawa Heart Institute (UOHI) have identified a novel gene in the nucleus of muscle and brain cells that affects heart development and the aging process. Their investigation brings the promise of new treatments for an old, failing heart.

"We know that aging is the greatest predictor of and . So we have been working backward in time, looking at the fetal heart to understand changes in the process as it ages, grows frail and fails," said molecular biologist Patrick Burgon, PhD.

A research team led by Burgon discovered the gene in the cell's nucleus – the site where hereditary information or DNA is housed – suggesting that it may control the behavior of other genes important in .

The researchers, who focus on the fetal heart as it grows into an adult heart, named the gene MLIP for Muscle enriched A-type Lamin Interacting Protein. Mutations in the Lamin gene family are associated with muscular dystrophy and other degenerative heart muscle diseases.

Their findings have been reported electronically in the Journal of Biological Chemistry and are scheduled for formal publication in June. Researchers now will investigate how animal models respond when the MLIP gene is removed to gain greater knowledge into its function.

"Greater knowledge of this gene and how it works will help us understand loss of cardiac function. Our research opens up new avenues relevant to the characteristics of cardiac development," said Burgon.

At the Heart Institute, studies to identify complex cardiovascular mechanisms are part of a world-wide effort among a core of leading scientific organizations. The Heart Institute collaborates with an international consortium that has already discovered 13 new genes that increase the risk of coronary artery disease (CAD).

Heart Institute researchers previously identified gene 9p21 – the first genetic risk factor recognized for disease and the first major new cardiovascular risk factor since the discovery of cholesterol. The Institute has also located a variety of other genes influencing diseases such as atrial fibrillation and biological processes such as obesity.

Explore further: Potent, puzzling and (now less) toxic: Team discovers how antifungal drug works

More information: www.jbc.org/content/early/2011/04/15/jbc.M110.165548.abstract

Provided by University of Ottawa Heart Institute

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Researchers find master gene behind blood vessel development

Feb 04, 2009

In a first of its kind discovery, University of Minnesota researchers have identified the "master gene" behind blood vessel development. Better understanding of how this gene operates in the early stages of development may ...

Researchers link gene mutations to Ebstein's anomaly

Feb 16, 2011

Ebstein's anomaly is a rare congenital valvular heart disease. Now, in patients with this disease, researchers of the Academic Medical Center Amsterdam in the Netherlands, the University of Newcastle, UK and the Max Delbrück ...

Recommended for you

Researchers show fruit flies have latent bioluminescence

Apr 10, 2014

New research from Stephen C. Miller, PhD, associate professor of biochemistry and molecular pharmacology, shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark—otherwise ...

User comments : 0

More news stories

Chemists achieve molecular first

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.