MOST microsatellite reveals true nature of mysterious dust-forming Wolf-Rayet binary CV Ser

May 31, 2011

( -- Using the Canadian MOST microsatellite, a team of researchers from the Universite de Montreal and the Centre de Recherche en Astrophysique du Quebec has made a stunning observation. As they'll report at this week's CASCA 2011 meeting in Ontario, Canada, the team has observed significant changes in the depth of the atmospheric eclipses in the 30-day binary WR+O system CV Serpentis, suggesting a never before seen change of mass-loss rate of the WR component by 70%.

Intrinsically luminous stars, like those in CV Ser, are the ecological motors of the Universe. They include both massive stars (i.e., those that explode as supernovae after driving strong winds all their lives) and medium-mass stars (about 1-8 M_Sun, that increase their luminosity by a factor of 1,000 only during their last dying stages before ejecting their extended outer layers in what astronomers call planetary nebulae). Massive stars are relatively rare, but they make up for this by their extreme luminosities and winds.

Among , the most interesting stage is arguably the last 10% in the lifetime of the star, when is used up and the star survives by much hotter He-burning. This is the so-called Wolf-Rayet stage, named after the two French astronomers that discovered the first stars of this type in 1867 using a small telescope in Paris equipped with a spectroscope. Wolf and Rayet were astonished by the intense, broad emission lines arising in their ultra-strong hot .

Towards the end of the WR phase, the products of He-burning (mainly ) eventually reach the stellar surface and are blown off in the wind. WR stars in this stage are called WC stars (in contrast to WN stars, where the N-rich products of H-burning are still spewing out). Some WC stars are known to produce copious quantities of carbon-based dust, i.e., conglomerates of many C atoms stuck together in amorphous ranging in size from a few to millions of atoms. How dust forms in general is one of the mysteries of the cosmos, but most astronomers believe that it requires high pressure and less than high temperatures, making it even more of a mystery how hot WC can do it. But they do, so it behooves astronomers to examine key cases for clues.

One key case is undoubtedly the sporadic dust-producing WC star in CV Ser. MOST was recently used to monitor CV Ser twice (2009 and 2010), revealing remarkable changes in the depths of the atmospheric eclipse that occurs every time the hot companion's light is absorbed as it passes through the inner dense WC wind. The remarkable, unprecedented 70% change in the WC mass-loss rate might be connected to dust formation.

Explore further: Celestial Season's Greetings from Hubble

Related Stories

Celestial Season's Greetings from Hubble

December 19, 2006

Swirls of gas and dust reside in this ethereal-looking region of star formation imaged by NASA's Hubble Space Telescope. This majestic view, located in the Large Magellanic Cloud (LMC), reveals a region where low-mass, infant ...

Discovery of a new type of very-high-energy gamma ray emitter

February 6, 2007

An international team of astrophysicists from the H.E.S.S. collaboration has announced the discovery of a new type of very-high-energy (VHE) gamma ray source. Combining data obtained during a systematic survey of the Galactic ...

The Stars behind the Curtain (w/ Video)

February 3, 2010

( -- ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most ...

Brilliant Star in a Colourful Neighbourhood

July 28, 2010

A spectacular new image from ESO's Wide Field Imager at the La Silla Observatory in Chile shows the brilliant and unusual star WR 22 and its colorful surroundings. WR 22 is a very hot and bright star that is shedding its ...

Dust, blowing in the wind

April 25, 2011

( -- Interstellar space contains vast quantities of dust that obscures our view while helping to catalyze the chemical reactions that turn atomic gases into complex molecular species. Most dust is made in the ...

Recommended for you

Orbiter views Mars surface fractures

October 8, 2015

The High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA's Mars Reconnaissance Orbiter often takes images of Martian sand dunes to study the mobile soils. These images provide information about erosion and ...

NASA measuring the pulsating aurora

October 7, 2015

Thanks to a lucky conjunction of two satellites, a ground-based array of all-sky cameras, and some spectacular aurora borealis, researchers have uncovered evidence for an unexpected role that electrons have in creating the ...

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) May 31, 2011
2 / 5 (3) May 31, 2011
Towards the end of the WR phase, the products of He-burning (mainly carbon atoms) " . . .

That statement is incorrect.

Laboratory and theoretical studies both show that burning of Helium (He-4) produces mostly Oxygen (O-16), rather than Carbon (C-12).

Nobel Laureate William A. Fowler commented on this problem.

His statement is quoted and addressed on page 2 of this preprint ["Neutron Repulsion", The APEIRON Journal, in press, 19 pages (2011)]

With kind regards,
Oliver K. Manuel
Former NASA Principal
Investigator for Apollo
not rated yet Jun 01, 2011
Carbon needs to form first to produce Oxygen when reacting with Helium. :(

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.