Getting inside the control mechanisms of complex systems

May 13, 2011
Getting inside the control mechanisms of complex systems
Northeastern and MIT researchers have merged network science and control theory principles to understand complex networks. Credit: Mauro Martino

Northeastern University researchers are offering a fascinating glimpse into how greater control of complex systems, such as cellular networks and social media, can be achieved by merging the tools of network science and control theory.

Albert-László Barabási and Yang-Yu Liu coauthored a paper on the research findings, featured as the cover story in the May 12 issue of the journal Nature. Barabási, a world-renowned scientist, is a distinguished professor in the Departments of Physics and Biology and the College of Computer and Information Science, and is the founding director of Northeastern’s Center for Research. Liu is a postdoctoral research associate in Barabasi’s lab.

The researchers said this approach can lead to major strides in understanding complex engineering and biological systems. For example, controlling the neural and metabolic pathways in living organisms could lead to health-care breakthroughs in drug discovery and disease treatments.

“Most large complex networks have been created for some practical purpose: metabolic networks to process the food we eat, the Internet to transfer information, organizational networks to achieve the goals of an organization,” said Barabási. “The tools developed in this paper offer the possibility to better understand how to control these systems. This could potentially generate more efficient metabolic pathways, with applications in developing cures to metabolic diseases, to offering new insights into the design of better organizations.”

Barabási and Liu collaborated with MIT researcher Jean-Jacques Slotine on the paper.   

The researchers note that control theory already offers mathematical tools for steering engineered and natural systems — such as synchronized manufacturing processes, cars, robots and electrical circuits — toward a desired state.

However, they said a framework is lacking to take charge of complex, self-organized systems — such as cellular and social networks. To meet this challenge, they combined the principles of control theory with their innovative network science research to develop an algorithm that can assess the driver nodes, or connection points, within a particular complex network. By doing so, they can determine how many nodes are necessary to control in order to gain control of the system.

The trio was interested in discovering the minimum number of driver nodes needed to control a complex network. They found that denser networks with more connections — such as online social networks — were easier to control than . They also found that sparse networks, like many biological and communication networks, are the hardest to control.

Liu said this work represents a fundamental contribution to both and network science research.

“This work was not possible 10 years ago, because at that time we didn’t know how to categorize these complex networks. We didn’t have the data,” Liu said. “But today, we have the data available for empirical studies on many large-scale networks.”

Explore further: Earthquake simulation tops one quadrillion flops

add to favorites email to friend print save as pdf

Related Stories

A cellular roadmap for medical researchers

Jan 06, 2011

(PhysOrg.com) -- Advances in network science to map the complexity of human cells promises to offer significant new resources for health professionals striving to cure disease, according to a new paper coauthored ...

How to control complex networks

May 12, 2011

At first glance, a diagram of the complex network of genes that regulate cellular metabolism might seem hopelessly complex, and efforts to control such a system futile.

Northeastern researchers made the call on 'zombie virus'

Nov 16, 2010

Northeastern University researchers predicted last year that major Smartphone viruses will become a real threat to devices such as Blackberrys and iPhones once a particular operating system approaches a 10 perc ...

In an emergency, word spreads fast and far

Apr 04, 2011

(PhysOrg.com) -- Large-scale emergencies, such as bombings and plane crashes, trigger a sharp spike in the number of phone calls and text messages sent by eyewitnesses in the vicinity of the disaster, according ...

Physics rules network dynamics

Dec 11, 2009

(PhysOrg.com) -- When it comes to the workings of the Web, the brain, or a social network, physics finds universal truths.

Doing the math on where people go

Sep 15, 2010

Network scientists at Northeastern University have created a mathematical model that can simulate human mobility over the course of several months or even years.

Recommended for you

Tech giants look to skies to spread Internet

2 hours ago

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

3 hours ago

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

3 hours ago

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Dish Network denies wrongdoing in $2M settlement

13 hours ago

The state attorney general's office says Dish Network Corp. will reimburse Washington state customers about $2 million for what it calls a deceptive surcharge, but the satellite TV provider denies any wrongdoing.

Yahoo sees signs of growth in 'core' (Update)

13 hours ago

Yahoo reported a stronger-than-expected first-quarter profit Tuesday, results hailed by chief executive Marissa Mayer as showing growth in the Web giant's "core" business.

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...