Mechanism behind compound's effects on skin inflammation and cancer progression

May 23, 2011

Charles J. Dimitroff, MS, PhD and colleagues in the Dimitroff Lab at Brigham and Women's Hospital, have developed a fluorinated analog of glucosamine, which, in a recent study, has been shown to block the synthesis of key carbohydrate structures linked to skin inflammation and cancer progression. These findings appear in the April 14, 2011, issue of the Journal of Biological Chemistry.

Dr. Dimitroff and colleagues show for the first time that the fluorinated glucosamine therapeutic works not through direct incorporation into growing sugar chains as previously believed but instead blocks the synthesis of a key sugar, UDP-GlcNAc, inside immune cells characteristically involved inflammation and anti-tumor immunity

Accordingly, this report underscores a novel and previously unknown mechanism by which fluorinated glucosamine analogs could shape and reduce inflammation intensity, while boosting anti-tumor immune responses. Such knowledge could prove valuable in the design of new and more potent glucosamine mimetics against disease as well as in treatment strategies to utilize existing glucosamine mimetics more efficiently.

Explore further: Structure of sodium channels different than previously believed

Provided by Brigham and Women's Hospital

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Glucosamine causes the death of pancreatic cells

Oct 27, 2010

High doses or prolonged use of glucosamine causes the death of pancreatic cells and could increase the risk of developing diabetes, according to a team of researchers at Universite Laval's Faculty of Pharmacy. Details of ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories