Mediating magnetism

May 04, 2011
Figure 1: A representation of a thin film of Co:TiO2 in which ferromagnetism arises because titanium 3d electrons (green) travel around the material aligning the spin of cobalt atoms (pink) so that they all point in the same direction. The blue and brown spheres correspond to titanium and oxygen atoms, respectively. Copyright : 2011 Takumi Ohtsuki

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Spintronics -- also known as magnetoelectronics -- may replace electronics as the medium of choice for computer memory. The discovery of a mechanism that produces permanent magnets at , without any external influence, may soon improve the design of spintronic devices. Takumi Ohtsuki from the RIKEN SPring-8 Center, Harima and his colleagues in Japan, made the discovery in a class of material called a dilute ferromagnetic oxide.

is the mechanism responsible for making some materials without any external influence. In a , the axes about which a majority of the electrons spin are all parallel, but the underlying cause for this alignment is not always clear. A dilute ferromagnetic oxide is an oxide material doped with a small amount of a , which represents a marriage between magnetic materials and those used in electronics. Crucially, and unlike the ferromagnetic-semiconductors, dilute ferromagnetic oxides remain in a ferromagnetic state at room temperature.

Some materials have ferromagnetic constituents but exhibit no magnetism. However, some ferromagnets consist of substances that, on their own, are nonmagnetic. A full understanding of this enigma is vital for designing efficient spintronic devices and requires determining which electrons, or other type of charge carrier in a material, mediate the ferromagnetism. To resolve this question in dilute ferromagnetic oxides, Ohtsuki and his co-workers examined one commonly used example: cobalt-doped (Co:TiO2). “Several mechanisms have been suggested for the origin of ferromagnetism in Co:TiO2, but no firm conclusion has been established,” says Ohtsuki.

The researchers used a powerful material characterization technique known as x-ray photoemission spectroscopy. A beam of x-rays, in this case from the SPring-8 synchrotron radiation facility, excited electrons from the sample of Co:TiO2. “The number of excited electrons versus their kinetic energies provided detailed information about the atomic composition and electronic state of the material,” explains Ohtsuki.

Ohtsuki and his team established that ferromagnetism is mediated by the electrons in the third shell—so-called 3d electrons—of the titanium ions (Fig. 1), a mechanism that has never been considered as a possibility by scientists before. The titanium 3d align the spin of the cobalt atoms as they travel through the material.

The team’s discovery enhances the likelihood that dilute ferromagnetic oxides will be used as spintronic devices. “Our results have proven that magnetism and conductivity are correlated in Co:TiO2 thin films,” explains Ohtsuki. “This could make them applicable to magnetic random access memory (MRAM) or spin transistors.”

Explore further: New method for non-invasive prostate cancer screening

More information: Ohtsuki, T., Chainani, A., Eguchi, R., Matsunami, M., Takata, Y., Taguchi, M., Nishino, Y., Tamasaku, K., Yabashi, M., Ishikawa, T. et al. Role of Ti 3d carriers in mediating the ferromagnetism of Co:TiO2 anatase thin films. Physical Review Letters 106, 047602 (2011). prl.aps.org/abstract/PRL/v106/i4/e047602

Related Stories

Creating a pure spin current in graphene

Feb 07, 2011

(PhysOrg.com) -- Graphene is a material that has the potential for a number of future applications. Scientists are interested in using graphene for quantum computing and also as a replacement for electronics. However, in ...

Studying Magnetic Interface Ferromagnetism

Jun 28, 2007

The development of various magnetic-based devices, such as read-heads found inside your computer, depends on the discovery and improvement of new materials and magnetic effects.

Spin polarization achieved in room temperature silicon

Nov 27, 2009

(PhysOrg.com) -- A group in The Netherlands has achieved a first: injection of spin-polarized electrons in silicon at room temperature. This has previously been observed only at extremely low temperatures, ...

Recommended for you

New method for non-invasive prostate cancer screening

12 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

13 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

13 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

18 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0