Long-standing question about swimming in elastic liquids, answered

May 18, 2011

A biomechanical experiment conducted at the University of Pennsylvania School of Engineering and Applied Science has answered a long-standing theoretical question: Will microorganisms swim faster or slower in elastic fluids? For a prevalent type of swimming, undulation, the answer is 'slower.'

Paulo Arratia, assistant professor of and applied mechanics, along with student Xiaoning Shen, conducted the experiment. Their findings were published in the journal .

Many animals, and cells move by undulation, and they often do so through elastic fluids. From worms aerating to sperm racing toward an egg, dynamics in elastic fluids is relevant to a number of facets of everyday life; however, decades of research in this area have been almost entirely theoretical or done with computer models. Only a few investigations involved live organisms.

“There have been qualitative observations of sperm cells, for example, where you put sperm in water and watch their tails, then put them in an elastic fluid and see how they swim differently,” Arratia said. “But this difference has never been characterized, never put into numbers to quantify exactly how much affects the way they swim, is it faster or slower and why.”

The main obstacle for quantitatively testing these theories with live organisms is developing an elastic fluid in which they can survive, behave normally and in which they can be effectively observed under a microscope.

Arratia and Shen experimented on the nematode C. elegans, building a swimming course for the millimeter-long . The researchers filmed them through a microscope while the creatures swam the course in many different liquids with different elasticity but the same viscosity.

Though the two liquid traits, elasticity and viscosity, sound like they are two sides of the same coin, they are actually independent of each other. Viscosity is a liquid’s resistance to flowing; elasticity describes its tendency to resume its original shape after it has been deformed. All fluids have some level of viscosity, but certain liquids like saliva or mucus, under certain conditions, can act like a rubber band.

Increased viscosity would slow a swimming organism, but how one would fare with increased elasticity was an open question.

“The theorists had a lot of different predictions,” Arratia said. “Some people said elasticity would make things go faster. Others said it would make things go slower. It was all over the map.

“We were the first ones to show that, with this animal, elasticity actually brings the speed and swimming efficiency down.”

The reason the nematodes swam slower has to do with how viscosity and elasticity can influence each other.

“In order to make our fluids elastic, we put polymers in them,” Arratia said. “DNA, for example, is a polymer. What we use is very similar to DNA, in that if you leave it alone it is coiled. But if you apply a force to it, the DNA or our polymer, will start to unravel.

“With each swimming stroke, the nematode stretches the polymer. And every time the polymers are stretched, the viscosity goes up. And as the goes up, it's more resistance to move through.”

Beyond giving theorists and models a real-world benchmark to work from, Arratia and Shen’s experiment opens the door for more live-organism experiments. There are still many un-answered questions relating to swimming dynamics and elasticity.

“We can increase the elasticity and see if there is a mode in which speed goes up again. Once the fluid is strongly elastic, or closer to a solid, we want to see what happens,” Arratia said. “Is there a point where it switches from swimming to crawling?”

Explore further: Exploring the characteristics of viscoelastic fluids

Related Stories

Exploring the characteristics of viscoelastic fluids

February 4, 2010

(PhysOrg.com) -- There are many microorganisms out there, navigating through complex biological fluids. “One of the most common migrations takes place with spermatozoa as it navigates the female reproductive tract,” Joseph ...

Smashing fluids... the physics of flow

November 29, 2010

(PhysOrg.com) -- Hit it hard and it will fracture like a solid... but tilt it slowly and it will flow like a fluid. This is the intriguing property of a type of ‘complex fluid’ which has revealed ‘new physics’ ...

Investigating sickle cell disease

February 25, 2011

Until recently, the pairing of molecular biology and mechanical engineering would have been viewed as highly unusual. But thanks to an explosion of imaging and simulation techniques over the past few decades, the opportunity ...

Recommended for you

Light-optics research could improve medical imaging

October 13, 2015

A team of researchers, including The University of Queensland's Dr Joel Carpenter, has developed echo-less lights that could improve medical imaging inside the body, leading to less-intrusive surgery.

Just a touch of skyrmions

October 13, 2015

Ancient memory devices such as handwriting were based on mechanical energy—but in the modern world they have given way to devices based generally on electrical manipulation.

Scientists paint quantum electronics with beams of light

October 9, 2015

A team of scientists from the University of Chicago and the Pennsylvania State University have accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) May 18, 2011
...they (viscosity and elasticity) are actually independent of each other.

The reason ... has to do with how viscosity and elasticity can influence each other.

All fluids have some level of viscosity

Well, this does provide motivation for interested readers.
I'm not going to spoil the ensuing commentary.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.