Researchers discover key molecule for stem cell pluripotency

May 27, 2011

Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have discovered what enables embryonic stem cells to differentiate into diverse cell types and thus to be pluripotent. This pluripotency depends on a specific molecule – E-cadherin – hitherto primarily known for its role in mediating cell-cell adhesion as a kind of "intracellular glue". If E-cadherin is absent, the stem cells lose their pluripotency. The molecule also plays a crucial role in the reprogramming of somatic cells (body cells) into pluripotent stem cells.

Dr. Daniel Besser, Prof. Walter Birchmeier and Torben Redmer from the MDC, a member of the Helmholtz Association, used mouse embryonic fibroblasts (MEFs) in their stem cell experiments. In a first step they showed that the pluripotency of these stem cells is directly associated with the cell-adhesion molecule E-cadherin. If E-cadherin is absent, the stem cells lose their pluripotency.

In a second step the researchers investigated what happens when somatic cells that normally neither have E-cadherin nor are pluripotent are reprogrammed into a pluripotent stem cell state. In this reprogramming technique, somatic cells are converted into induced pluripotent stem cells (iPSCs). This new technique may help researchers avoid the controversies that come with the use of human embryos to produce human embryonic stem cells for research purposes.

The MDC researchers found that in contrast to the original cells, the new pluripotent cells derived from mouse connective tissue contained E-cadherin. "Thus, we have double proof that E-cadherin is directly associated with stem-cell pluripotency. E-Cadherin is necessary for maintaining pluripotent stem cells and also for inducing the pluripotent state in the reprogramming of somatic cells," Dr. Besser said. "If E-cadherin is absent, somatic cells cannot be reprogrammed into viable pluripotent cells." In addition, E-Cadherin can replace OCT 4, one of the signaling until now considered indispensable for reprogramming.

Next, the MDC researchers want to find out to what extent E-cadherin also regulates human embryonic stem cells. "Understanding the molecular relationships is essential for using human somatic cells to develop stem cell therapy for diseases such as heart attack, Alzheimer's or Parkinson's disease or diabetes," Dr. Besser said.

Explore further: Genomes of malaria-carrying mosquitoes sequenced

More information: EMBO Reports, advance online publication 27 May 2011; doi:10.1038/embor.2011.88

add to favorites email to friend print save as pdf

Related Stories

Rethinking reprogramming: A new way to make stem cells

Apr 07, 2011

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

Nov 27, 2014

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.