Researchers discover key molecule for stem cell pluripotency

May 27, 2011

Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have discovered what enables embryonic stem cells to differentiate into diverse cell types and thus to be pluripotent. This pluripotency depends on a specific molecule – E-cadherin – hitherto primarily known for its role in mediating cell-cell adhesion as a kind of "intracellular glue". If E-cadherin is absent, the stem cells lose their pluripotency. The molecule also plays a crucial role in the reprogramming of somatic cells (body cells) into pluripotent stem cells.

Dr. Daniel Besser, Prof. Walter Birchmeier and Torben Redmer from the MDC, a member of the Helmholtz Association, used mouse embryonic fibroblasts (MEFs) in their stem cell experiments. In a first step they showed that the pluripotency of these stem cells is directly associated with the cell-adhesion molecule E-cadherin. If E-cadherin is absent, the stem cells lose their pluripotency.

In a second step the researchers investigated what happens when somatic cells that normally neither have E-cadherin nor are pluripotent are reprogrammed into a pluripotent stem cell state. In this reprogramming technique, somatic cells are converted into induced pluripotent stem cells (iPSCs). This new technique may help researchers avoid the controversies that come with the use of human embryos to produce human embryonic stem cells for research purposes.

The MDC researchers found that in contrast to the original cells, the new pluripotent cells derived from mouse connective tissue contained E-cadherin. "Thus, we have double proof that E-cadherin is directly associated with stem-cell pluripotency. E-Cadherin is necessary for maintaining pluripotent stem cells and also for inducing the pluripotent state in the reprogramming of somatic cells," Dr. Besser said. "If E-cadherin is absent, somatic cells cannot be reprogrammed into viable pluripotent cells." In addition, E-Cadherin can replace OCT 4, one of the signaling until now considered indispensable for reprogramming.

Next, the MDC researchers want to find out to what extent E-cadherin also regulates human embryonic stem cells. "Understanding the molecular relationships is essential for using human somatic cells to develop stem cell therapy for diseases such as heart attack, Alzheimer's or Parkinson's disease or diabetes," Dr. Besser said.

Explore further: How a molecular Superman protects the genome from damage

More information: EMBO Reports, advance online publication 27 May 2011; doi:10.1038/embor.2011.88

add to favorites email to friend print save as pdf

Related Stories

Rethinking reprogramming: A new way to make stem cells

Apr 07, 2011

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could ...

Recommended for you

Scientists see how plants optimize their repair

10 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

16 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

17 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

User comments : 0