Highly sensitive graphene biosensors based on surface plasmon resonance

May 5, 2011 By Joanne Tan
Fig. 1 The N-Layer model for surface plasmon resonance (SPR) biosensor: prism | Au (50 nm) | graphene (L 0.34 nm) | sensing medium, where L is the number of graphene layers, and z0 = 100 nm is the thickness of biomolecule layer.

Adding a few graphene layers onto the conventional gold-film SPR biosensor will boost up its sensitivity dramatically. The improved sensitivity comes from the graphene layer’s increased adsorption of biomolecules and the graphene layer’s optical modification to the SPR.

Surface plasmon resonance (SPR) biosensors are optical sensors, which use surface plasmon polariton waves to probe the interactions between biomolecules and the sensor surface. In the conventional SPR configuration, a thin metallic film is coated on one side of the prism, separating the sensing medium and the prism. The metallic film is typically made from noble metals, such as gold and silver, which support the propagation of surface plasmon polariton at visible light frequencies. But, gold is usually preferred because it has good resistance to oxidation and corrosion in different environments.

However, biomolecules adsorb poorly on gold. This drawback limits the sensitivity of the conventional SPR biosensor.

An attractive way to improve the sensitivity of SPR biosensor is to functionalize the gold film with biomolecular recognition elements (BRE) in order to enhance the adsorption of biomolecules on the gold surface.

Fig. 2 (a) The surface plasmon resonance curves for the conventional biosensor (L = 0) (black thin lines) and the monolayer graphene biosensor (L = 1) (blue thick lines) for He-Ne laser light (λ0 = 633 nm): prism (1.723) | Au (50 nm, 0.1726 + i 3.4218) | graphene (L × 0.34 nm, 3 + i 1.149106) | water (1.33) before (dashed lines) and after (solid lines) the adsorption of biomolecules, assuming the same refractive index change ∆n = 0.005. (b) The sensitivity enhancement ∆SRIL/SRI0 as a function of the number of graphene layers L.

Here, we propose to use graphene as the BRE, where a sheet of graphene is coated on the gold surface in the conventional SPR biosensor setup. Graphene-on-Au (111) has been proposed and fabricated recently, which is shown to stably adsorb biomolecules with carbon-based ring structures (e.g. ssDNA).

This special property of graphene enables a greater refractive index change near the graphene | sensing medium interface than that of the conventional SPR biosensor. Moreover, the coating of the gold surface with will also modify the propagation constant of surface plasmon polariton (SPP); thereby change the sensitivity to refractive index change.

Explore further: Light-speed nanotech: Controlling the nature of graphene

More information: For more detail, including an in-depth explanation of how the proposed graphene-on-gold SPR biosensor functions, please see this pdf paper.

Related Stories

Light-speed nanotech: Controlling the nature of graphene

January 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production of graphene-based ...

A flash of light turns graphene into a biosensor

September 23, 2009

(PhysOrg.com) -- Biomedical researchers suspect graphene, a novel nanomaterial made of sheets of single carbon atoms, would be useful in a variety of applications. But no one had studied the interaction between graphene and ...

Sculptured materials allow multiple channel plasmonic sensors

November 10, 2009

(PhysOrg.com) -- Sensors, communications devices and imaging equipment that use a prism and a special form of light -- a surface plasmon-polariton -- may incorporate multiple channels or redundant applications if manufacturers ...

Graphene: What projections and humps can be good for

April 19, 2010

At present, graphene probably is the most investigated new material system worldwide. Due to its astonishing mechanical, chemical and electronic properties, it promises manifold future applications - for example in microelectronics. ...

Recommended for you

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.