Measuring galaxy black hole masses

May 27, 2011
The galaxy NGC 4151 seen in a multi-color composite. The size of the massive black hole in its nucleus has been measured using a new infrared technique. Credit: X-ray (blue): NASA/CXC/CfA/J.Wang et al.; Optical (yellow): Isaac Newton Group of Telescopes, La Palma/Jacobus Kapteyn Telescope; Radio (red): NSF/NRAO/VLA

(PhysOrg.com) -- Black holes, one of the most amazing and bizarre predictions of Einstein's theory of gravity, are irresistible sinks for matter and energy. They are so dense that not even light can escape from their gravitational clutches.

Massive black holes, containing millions to billions of of material, reside at the centers of most galaxies including our own Milky Way.

Although black holes are dark, their masses can be measured quite precisely from their on stars and other matter.

Astronomers have done just that over the past few decades by looking at the way gas around a nucleus moves under the influence of the .

The results on dozens of galaxies so far have shown that black hole sizes can be reliably estimated with this technique.

It is not always easy, however, to separate the light around the nuclear region from the rest of a galaxy's starlight in order to measure this moving gas.

SAO astronomers Martin Elvis and Margarita Karovska, together with five colleagues, have devised a new technique that takes advantage of the fact that the infrared of the gas also depends on its motion, and so also provides a measure of the black hole mass.

They find from a sample of fourteen previously measured galaxies that the infrared observations give very good agreement with other techniques.

Since infrared observations can in many situations be easier to obtain, the new technique will allow black hole measurements to be extended to many other galaxies.

Explore further: Computer Finds Massive Black Hole in Nearby Galaxy

Related Stories

Computer Finds Massive Black Hole in Nearby Galaxy

June 9, 2009

Astronomers Karl Gebhardt of The University of Texas at Austin and Jens Thomas of the Max Planck Institute for Extraterrestrial Physics have used new computer modeling techniques to discover that the black hole at the heart ...

Astronomers calculate mass of largest black hole yet

January 14, 2011

(PhysOrg.com) -- Weighing 6.6 billion solar masses, the black hole at the center of galaxy M87 is the most massive black hole for which a precise mass has been measured. Using the Frederick C. Gillett Gemini Telescope on ...

Image: A supermassive black hole

January 24, 2011

(PhysOrg.com) -- In a single exposure, astronomers were able to confirm the existence of a supermassive black hole in the center of galaxy M84.

Dark matter does not act as growth factor

January 26, 2011

(PhysOrg.com) -- Massive black holes have been found at the centers of almost all galaxies, where the largest galaxies – which are also the ones embedded in the largest halos of Dark Matter – harbor the most massive ...

Recommended for you

At Saturn, one of these rings is not like the others

September 2, 2015

When the sun set on Saturn's rings in August 2009, scientists on NASA's Cassini mission were watching closely. It was the equinox—one of two times in the Saturnian year when the sun illuminates the planet's enormous ring ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

Image: Hubble sees a youthful cluster

August 31, 2015

Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1.3 / 5 (14) May 27, 2011
Thanks for the news report on black holes (BH).

BH seemed reasonable before neutron repulsion was reported [1,2].

Now it seems more likely that our cyclic universe is controlled by competition between the attractive force of gravity and the repulsive force between neutrons [3].

1. "Attraction and repulsion of nucleons: Sources of stellar energy"
Journal of Fusion Energy 19, 93-98 (2001)

www.omatumr.com/a...tnuc.pdf

2. "Neutron Repulsion", The APEIRON Journal, in press, 19 pages (2011)

http://arxiv.org/...2.1499v1

3."Is the Universe Expanding?", The Journal of Cosmology 13, 4187-4190 (2011)

http://journalofc...102.html

With kind regards,
Oliver K. Manuel

that_guy
5 / 5 (1) May 27, 2011
If there was a black hole made of dark matter, would you be able to measure it the same way?
that_guy
5 / 5 (4) May 27, 2011
Only if there were 'dark neutron repulsion', right Ollie?


Don't be silly. There is no such thing as 'Dark Neutron Repulsion'.

It's 'Anti-Neutron Repulsion' and it is as real as the ingrown hair inside my nose.

Shahidur_Rahman_Sikder
1 / 5 (2) May 29, 2011
Gravitational worlds, they are moving or changing the orbit with their all family members depending on the nuclear of each other. Circumstantial evidence: cluster of galaxies and galaxy or stars, this there are the black holes in the deep of gravitational world, they are moving or changing the orbit with their all family members depending on the nuclear of each other. In this way; seeing, all of the family members combining by the gravitation power and finally super massive black holes depending on the nuclear fusion of the universe through that dark energy or black body.

jsdarkdestruction
not rated yet Jul 22, 2011
Now it seems more likely that our cyclic universe is controlled by competition between the attractive force of gravity and the repulsive force between neutrons [3].

To you and your crazy friend hilton of yours. Not even your students who worked with you on studying the nuclear rest masses you base your crazy theory off support your interpetation of the evidence. Get real oliver.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.