Extensive protein interaction network controls gene regulation

May 26, 2011

The genes of a cell are like the 88 keys of a piano. To play chords and music, however, the keys must be activated in exact combinations by a pianist's hands. Those hands represent the coregulators of a cell that simultaneously and precisely activate genes to produce all of the cell's functions.

More than half of your DNA is devoted to regulating how the that make proteins – the workhorses of the cells – carry out their tasks, said Dr. Bert O'Malley, who, with Dr. Jun Qin, co-led a team of scientists at Baylor College of Medicine that over eight years identified and classified virtually all the transcriptional coregulators in a human cells. These coregulators – coactivators and corepressors – control how and to what degree genes are turned on or off as well as when they are active and for how long. The more than 11,000 coregulators identified – the focus of O'Malley's work for more than 15 years – form and act in approximately 3,000 multi-protein complexes that function in the human cell. A report on their work appears in the current issue of the journal Cell.

"Genes are how we inherit our capacities," said O'Malley, chair of molecular and at BCM and a National Medal of Science recipient. "The DNA functions by first coding for the synthesis of RNAs (another form of genetic material), which in turn, directs the synthesis of proteins in the cells. Proteins are the final functional units emanating from the genes. They carry out all the biochemical reactions needed for a cell to live, grow and function. Coregulators are the helper proteins that actually decode the information in our genes."

"Surprisingly, we found that over half of our total DNA is used simply to create the immense number of coregulators that, in turn, regulate the expression of our genes. This indicates that 'precise regulation' in decoding genes is an absolutely mandatory rule in human cells, and that this occurs via the coregulator proteins," he said.

Dr. Ronald Margolis, senior advisor for molecular endocrinology at the National Institute of Diabetes and Digestive and Kidney Diseases — the division within the National Institutes of Health that supported the research—said the findings provide an important new tool for further research into endocrine and metabolic diseases such as diabetes and osteoporosis.

"Ultimately this work gives us new and important insights that are key to understanding how and why all types of hormones work the way they do," he said. "It's just this kind of basic research that provides the foundation for new diagnostics, therapies and devices."

Qin, professor in the departments of biochemistry and molecular biology and molecular and cellular biology at BCM, is a world expert in mass spectrometry, the backbone technique that enabled the scientists to identify and analyze the proteins and protein complexes.

Qin said the vision of Drs. O'Malley and Adam Kuspa, chair of biochemistry and molecular biology at BCM, enabled him to take the bold step of analyzing these proteins and determining how they work together – a massive project that provides a blueprint of knowledge on which to build new understanding of how proteins work and how their malfunctions result in disease.

"A curious journey sometimes can land on the right place," said Qin.

He credits Dr. Anna Malovannaya, who came to his laboratory as a graduate student, with developing the techniques that made it possible not only to identify the proteins but to figure out which ones work together and how.

"Determining the composition of the proteome – the entire set of proteins produced by a genome – does not tell you how it all works," said Malovannaya.

"Proteins work in groups. This study does not just profile them. It also tells how they interact with one another," Qin said.

"The way we looked at it was new," said Malovannaya. "We had to build new tools for grouping proteins into functional complexes and figure out which ones were important."

Achieving that took thousands of experiments. When they had done about 1,000 experiments, the answers became clearer, said Qin.

The Nuclear Receptor Signaling Atlas (NURSA) was the catalyst for the work, said Qin. O'Malley and Dr. Ronald Evans of the Salk Institute are co-directors of the project that is funded by the National Institute of Diabetes and Digestive and Kidney Diseases.

O'Malley and his colleagues were surprised by the fact that more than half of all human goes into producing the coregulators that decode genes, but in retrospect, it makes sense. They expected to find about 500 genes for directing the synthesis of coregulators and, instead, identified more than 11,000.

"The regulation of gene expression is complex," O'Malley said. "It is critical that genes turn on at the right time, in the exact right amount and under the right condition. If a gene makes 10 percent too much or too little of a , then the person develops a disease or functions poorly."

"It's all about accurate regulation and combinatorial regulation," he said. "Many hundreds of genes must be regulated together at precisely the same time. The cell is a master at that. Every gene has to function perfectly for a cell to work correctly – and the coregulators make it happen. It is one of the most amazing events biologists have discovered – beautifully complex and fine-tuned."

The eight-year project is of a magnitude similar to that of sequencing the genome, but "now we have determined the composition of the coregulator proteome," said O'Malley. Synthesis of the proteome is directed by the genome. Which proteins are produced and at what time depend on the type of cell and the functions of its coregulators. Malovannaya and Dr. Rainer B. Lanz, assistant professor, both in the department of molecular and cellular biology, were first authors of the Cell paper and contributed equally to the research.

Explore further: 'Quiet revolution' may herald new RNA therapeutics

More information: www.cell.com

Related Stories

'Quiet revolution' may herald new RNA therapeutics

January 21, 2007

Scientists at the University of Oxford have identified a surprising way of switching off a gene involved in cell division. The mechanism involves a form of RNA, a chemical found in cell nuclei, whose role was previously unknown, ...

Clocking in and out of gene expression

June 14, 2007

A chemical signal acts as time clock in the expression of genes controlled by a master gene called a coactivator, said Baylor College of Medicine researchers in a report that appears in the journal Cell today.

Call Stephen Michnick a gene grammarian

December 16, 2008

While life on Earth didn't originate from a blueprint, Stephen Michnick is helping the scientific community uncover the basic architecture of living things. A Université de Montréal biochemistry professor and Canada Research ...

SRC-1 controls liver's 'sweet spot' for glucose production

November 30, 2010

SRC-1 (steroid receptor coactivator) orchestrates glucose production in the liver, regulating the activity of a cascade of enzymes that turns sugar production on and off in the liver, said Baylor College of Medicine and Duke ...

Study of how genes activate yields surprising discovery

December 5, 2010

Scientists at Albert Einstein College of Medicine of Yeshiva University have made an unexpected finding about the method by which certain genes are activated. Contrary to what researchers have traditionally assumed, genes ...

Recommended for you

A step closer to understanding fertilization

February 8, 2016

Researchers at Karolinska Institutet in Sweden have taken a step closer to understanding the mechanism that leads to the fusion of egg and sperm at fertilisation. Using the technique X-ray crystallography, they have determined ...

Top dog: scientists measure canine IQ

February 8, 2016

Scientists are measuring the IQ of dogs in the hope of boosting understanding of the link between health and intelligence; proving that canines really are man's best friend

Turning the volume of gene expression up and down

February 8, 2016

Gene expression can be turned on and off like a switch, or it can be finely adjusted , as with a volume control knob. Dr Garth Ilsley, research scientist in Prof. Nick Luscombe's unit at the Okinawa Institute of Science and ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 26, 2011
This a very unique and empowering study. I wonder how long it will take the supplement companies to pick up on it and start adding some of these benefits to their protein powders?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.