Study: Error prevention, rather than correction, best for future of nanoelectronic devices

May 26, 2011 By Wileen Wong Kromhout

The move toward smarter, lighter and more powerful electronics, computers and smartphones depends on whether transistor circuits, the building blocks of such devices, can process large amounts of information. As these circuits get faster and smaller, the number of errors they generate -- arising from heat dissipation, noise and structural disorder -- in the physical information they process increases, which can impede development.

Experts have debated which of two error-suppressing processes is more efficient and efficacious as these are reduced to the nanoscale: (1) physical , in which the device is scaled down in size (and number of electrons) only to the point at which it can still prevent the generation of logical errors, or (2) architectural fault-tolerance, in which the device is continuously scaled down and robust algorithms are used to correct the errors it generates.

In a new study, Vwani Roychowdhury, professor of electrical engineering at the UCLA Henry Samueli School of Engineering and Applied Science and a member of the California NanoSystems Institute at UCLA, and Thomas Szkopek, professor of electrical and computer engineering at McGill University, and colleagues quantified for the first time these error-suppressing processes for model nanoelectronic systems and estimated the minimum number of electrons necessary for reliable circuit logic. They found that physical fault-tolerance in transistor circuits suppresses the error rate per electron exponentially, while even the most efficient architectural fault-tolerance system only suppresses the error rate subexponentially. They conclude that physical fault-tolerance error prevention is better than architectural fault tolerance error correction.

The study contributes a fundamental insight into the reliability of nanoscale transistor device technologies and scaling and may impose a minimum limit on the size of devices. The findings are of immediate relevance to researchers working in transistor-scaling, through to scientists developing new device concepts.

Explore further: Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster

More information: The research was recently published in the peer-reviewed Physical Review Letters and is available online at: prl.aps.org/abstract/PRL/v106/i17/e176801

Abstract
The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

add to favorites email to friend print save as pdf

Related Stories

First International Conference on Quantum Error Correction

Oct 01, 2007

Quantum error correction of decoherence and faulty control operations forms the backbone of all of quantum information processing. In spite of remarkable progress on this front ever since the discovery of quantum error correcting ...

'Self-correcting' gates advance quantum computing

Mar 12, 2009

(PhysOrg.com) -- Two Dartmouth researchers have found a way to develop more robust “quantum gates,” which are the elementary building blocks of quantum circuits. Quantum circuits, someday, will be used ...

Recommended for you

First in-situ images of void collapse in explosives

6 hours ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

Jul 24, 2014

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

User comments : 0