Study: Error prevention, rather than correction, best for future of nanoelectronic devices

May 26, 2011 By Wileen Wong Kromhout

The move toward smarter, lighter and more powerful electronics, computers and smartphones depends on whether transistor circuits, the building blocks of such devices, can process large amounts of information. As these circuits get faster and smaller, the number of errors they generate -- arising from heat dissipation, noise and structural disorder -- in the physical information they process increases, which can impede development.

Experts have debated which of two error-suppressing processes is more efficient and efficacious as these are reduced to the nanoscale: (1) physical , in which the device is scaled down in size (and number of electrons) only to the point at which it can still prevent the generation of logical errors, or (2) architectural fault-tolerance, in which the device is continuously scaled down and robust algorithms are used to correct the errors it generates.

In a new study, Vwani Roychowdhury, professor of electrical engineering at the UCLA Henry Samueli School of Engineering and Applied Science and a member of the California NanoSystems Institute at UCLA, and Thomas Szkopek, professor of electrical and computer engineering at McGill University, and colleagues quantified for the first time these error-suppressing processes for model nanoelectronic systems and estimated the minimum number of electrons necessary for reliable circuit logic. They found that physical fault-tolerance in transistor circuits suppresses the error rate per electron exponentially, while even the most efficient architectural fault-tolerance system only suppresses the error rate subexponentially. They conclude that physical fault-tolerance error prevention is better than architectural fault tolerance error correction.

The study contributes a fundamental insight into the reliability of nanoscale transistor device technologies and scaling and may impose a minimum limit on the size of devices. The findings are of immediate relevance to researchers working in transistor-scaling, through to scientists developing new device concepts.

Explore further: Combination of SRAM and DRAM Capacitor Technology Enables Error-Free Low-Power-Consumption SRAM

More information: The research was recently published in the peer-reviewed Physical Review Letters and is available online at: prl.aps.org/abstract/PRL/v106/i17/e176801

Abstract
The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

Related Stories

First International Conference on Quantum Error Correction

October 1, 2007

Quantum error correction of decoherence and faulty control operations forms the backbone of all of quantum information processing. In spite of remarkable progress on this front ever since the discovery of quantum error correcting ...

'Self-correcting' gates advance quantum computing

March 12, 2009

(PhysOrg.com) -- Two Dartmouth researchers have found a way to develop more robust “quantum gates,” which are the elementary building blocks of quantum circuits. Quantum circuits, someday, will be used to operate quantum ...

Redefining electrical current law with the transistor laser

May 12, 2010

(PhysOrg.com) -- While the laws of physics weren't made to be broken, sometimes they need revision. A major current law has been rewritten thanks to the three-port transistor laser, developed by Milton Feng and Nick Holonyak ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.