Enzyme helps control extension of cellular tendrils by regulating delivery of supplies needed for growth

May 20, 2011
An electron microscope image of a sensory bristle from the body of the fruit fly Drosophila melanogaster. Credit: Tetsuhisa Otani

The body of the adult fruit fly is covered with hair-like bristles (Fig. 1) that act as sensory organs for detecting tactile stimuli. Each one consists of a single cell that has gradually elongated over the course of pupal development, reinforced by bundles of actin protein filaments.

The signaling protein IKKε helps to regulate this process by controlling the organization of these actin bundles, but a recent study from Shigeo Hayashi and colleagues at the RIKEN Center for Development Biology in Kobe has revealed that IKKε also promotes bristle growth by managing the trafficking of cellular cargoes. 

Initial experiments by Hayashi and team showed that activated IKKε is primarily found at the tips of developing bristles, where growth-associated cargoes are most likely to be unloaded. “Membranes and associated proteins are water-insoluble and thus do not easily diffuse to distant sites, and one model is that distal trafficking actively delivers such insoluble materials as packages,” explains Hayashi. 

Membrane-enclosed bubbles known as endosomes are a core component in this process, using so-called motor proteins to travel along routes defined by a microscopic ‘railway’ of fibers known as microtubules. The researchers found that this trafficking is severely disrupted in the absence of IKKε, with endosomes remaining trapped at the ends of the bristle rather than being distributed throughout the cell.  

Hayashi and colleagues determined that IKKε interacts with a protein called Nuf, which links the motor protein Dynein with a key endosome-associated protein and thus contributes to directional transport of cargoes toward the tip of the growing bristle. Upon arrival at the tip, IKKε-mediated inactivation of Nuf sends the newly emptied endosomes on a return trip, thereby completing a ‘recycling’ process. “Such endosomal movement occurs in other cell types, but the shape of bristles makes this shuttling very prominent,” says Hayashi. “I think this is a very good example of how a highly specialized cell and its shape can reveal a mechanism of general significance.”

Many other cells grow in a similar fashion, ranging from the tiny branches that help connect neurons to the hairs on plant roots that assist in water absorption, and Hayashi speculates that similar regulatory mechanisms may also operate in these contexts. Moving forward, he and his colleagues will further explore the apparently central coordinating role of IKKε. “We are currently studying actin as a target,” says Hayashi, “and we are also studying upstream regulators of IKKε, hoping to uncover a comprehensive view of this signaling pathway.”

Explore further: Studies show a pathway for imported proteins through cell membrane that can be hijacked by toxins

More information: Otani, T., et al. IKKε regulates cell elongation through recycling endosome shuttling. Developmental Cell 20, 219–232 (2011).

add to favorites email to friend print save as pdf

Related Stories

Cell 'glue' opens new pathways to understanding cancer

Mar 11, 2011

Australian researchers have found a novel way in which the proteins that 'glue' cells together to form healthy tissues can come unstuck, opening new avenues to understanding how these proteins are disturbed in diseases such ...

Inflammation May Play Role in Metastasis of Prostate Cancer

Mar 20, 2007

Many would assume that “mounting an immune response” or “having your body fight the cancer” is a good thing. Now, research at the University of California, San Diego (UCSD) School of Medicine strongly suggests that ...

Recommended for you

Protection of the mouse gut by mucus depends on microbes

2 hours ago

The quality of the colon mucus in mice depends on the composition of gut microbiota, reports a Swedish-Norwegian team of researchers from the University of Gothenburg and the Norwegian University of Life Sciences in Oslo. ...

Researchers discover protein protecting against chlorine

3 hours ago

Chlorine is a common disinfectant that is used to kill bacteria, for example in swimming pools and drinking water supplies. Our immune system also produces chlorine, which causes proteins in bacteria to lose ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.