More effective and less risky when you paint the hull of your boat

May 09, 2011

Every boat owner recognises the dilemma: environmentally friendly or effective. Researchers at the University of Gothenburg have now found a way of reconciling these two almost unattainable aims. By using smart combinations of the most environmentally friendly biocides in the paint, it is possible to both reduce the total quantity of biocides and dramatically reduce the environmental impact.

"It's very easy to make an hull , and just as easy to make an effective hull paint. Yet there is still no paint that is both effective and environmentally friendly, which leaves both environmental authorities and boat owners dissatisfied," says Hans Blanck, Professor of Ecotoxicology at the Department of Plant and Environmental Sciences of the University of Gothenburg.

Professor Blanck has directed several sub-projects in the interdisciplinary research programme Marine Paint, which is financed by Mistra. Marine Paint is Sweden's largest combined research programme in the area of marine fouling and environmentally sound hull paints. The project began in 2003 with a substance that had been found to be effective against barnacles: medetomidine. Today the researchers are developing formulas to prevent all types of fouling through what are known as optimised blends of biocides, that is to say substances that can kill or otherwise cause problems for .

"The hull paints of today often contain one or two different biocides, and they need to be highly dosed to eliminate all types of fouling organisms. The idea behind optimised blends is to base them on several complementary biocides in the paint. In this way the combinations make more efficient use of each biocide and less overdosing is needed. We get rid of all fouling and the total need for biocides in the paint is reduced dramatically as a result."

To devise formulas for optimal blends, the researchers have developed a system of models in which the effect of different biocides on different types of fouling organisms is weighed up against the expected environmental risk. The result is a set of formulas – with different concentrations and combinations of biocides – that all are equally effective in preventing fouling. What distinguishes them is the anticipated risk to the environment. The formulas can therefore be adapted effectively to different conditions. The substances that the researchers have selected, in addition to medetomidine, are biocides that are on the market today and that will probably pass the ongoing evaluation under the EU Biocidal Products Directive.

Another common problem with present-day hull paints is that the active substances leach out too quickly. Large amounts of biocides are therefore needed for the paint to be effective over a long period.

"By using what are known as microcapsules, a microscopic bubble of polymer material containing dissolved bioicides, we can control release better. This technique works for virtually any biocide."

Explore further: Quantum mechanical calculations reveal the hidden states of enzyme active sites

add to favorites email to friend print save as pdf

Related Stories

Gene that causes barnacles to avoid ship hulls identified

Aug 16, 2010

The substance medetomidine has proved effective in preventing fouling of ship bottoms. Researchers at the University of Gothenburg have now identified the gene that causes the barnacle to react to the substance, ...

Potential antifouling substance can cause paler fish

May 10, 2010

The sedative medetomidine has proved effective at inhibiting fouling and is now being trialled by the EU as an ingredient for the antifouling paints of the future. Research at the University of Gothenburg, ...

Shark skin saves naval industry money

Jul 15, 2005

Covering ship hulls with artificial shark skin could help ships sailing smoothly. The growth of marine organisms such as barnacles on ship hulls is a major cause of increased energy costs in the naval industry. Shark skin ...

Researchers develop MRSA-killing paint

Aug 16, 2010

Building on an enzyme found in nature, researchers at Rensselaer Polytechnic Institute have created a nanoscale coating for surgical equipment, hospital walls, and other surfaces which safely eradicates methicillin ...

Sharkskin for airplanes, ships and wind energy plants

May 19, 2010

(PhysOrg.com) -- To lower the fuel consumption of airplanes and ships, it is necessary to reduce their flow resistance, or drag. An innovative paint system makes this possible. This not only lowers costs, ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.