More effective and less risky when you paint the hull of your boat

May 9, 2011

Every boat owner recognises the dilemma: environmentally friendly or effective. Researchers at the University of Gothenburg have now found a way of reconciling these two almost unattainable aims. By using smart combinations of the most environmentally friendly biocides in the paint, it is possible to both reduce the total quantity of biocides and dramatically reduce the environmental impact.

"It's very easy to make an hull , and just as easy to make an effective hull paint. Yet there is still no paint that is both effective and environmentally friendly, which leaves both environmental authorities and boat owners dissatisfied," says Hans Blanck, Professor of Ecotoxicology at the Department of Plant and Environmental Sciences of the University of Gothenburg.

Professor Blanck has directed several sub-projects in the interdisciplinary research programme Marine Paint, which is financed by Mistra. Marine Paint is Sweden's largest combined research programme in the area of marine fouling and environmentally sound hull paints. The project began in 2003 with a substance that had been found to be effective against barnacles: medetomidine. Today the researchers are developing formulas to prevent all types of fouling through what are known as optimised blends of biocides, that is to say substances that can kill or otherwise cause problems for .

"The hull paints of today often contain one or two different biocides, and they need to be highly dosed to eliminate all types of fouling organisms. The idea behind optimised blends is to base them on several complementary biocides in the paint. In this way the combinations make more efficient use of each biocide and less overdosing is needed. We get rid of all fouling and the total need for biocides in the paint is reduced dramatically as a result."

To devise formulas for optimal blends, the researchers have developed a system of models in which the effect of different biocides on different types of fouling organisms is weighed up against the expected environmental risk. The result is a set of formulas – with different concentrations and combinations of biocides – that all are equally effective in preventing fouling. What distinguishes them is the anticipated risk to the environment. The formulas can therefore be adapted effectively to different conditions. The substances that the researchers have selected, in addition to medetomidine, are biocides that are on the market today and that will probably pass the ongoing evaluation under the EU Biocidal Products Directive.

Another common problem with present-day hull paints is that the active substances leach out too quickly. Large amounts of biocides are therefore needed for the paint to be effective over a long period.

"By using what are known as microcapsules, a microscopic bubble of polymer material containing dissolved bioicides, we can control release better. This technique works for virtually any biocide."

Explore further: Shark skin saves naval industry money

Related Stories

Shark skin saves naval industry money

July 15, 2005

Covering ship hulls with artificial shark skin could help ships sailing smoothly. The growth of marine organisms such as barnacles on ship hulls is a major cause of increased energy costs in the naval industry. Shark skin ...

Potential antifouling substance can cause paler fish

May 10, 2010

The sedative medetomidine has proved effective at inhibiting fouling and is now being trialled by the EU as an ingredient for the antifouling paints of the future. Research at the University of Gothenburg, Sweden, has shown ...

Sharkskin for airplanes, ships and wind energy plants

May 19, 2010

(PhysOrg.com) -- To lower the fuel consumption of airplanes and ships, it is necessary to reduce their flow resistance, or drag. An innovative paint system makes this possible. This not only lowers costs, it also reduces ...

Gene that causes barnacles to avoid ship hulls identified

August 16, 2010

The substance medetomidine has proved effective in preventing fouling of ship bottoms. Researchers at the University of Gothenburg have now identified the gene that causes the barnacle to react to the substance, opening up ...

Researchers develop MRSA-killing paint

August 16, 2010

Building on an enzyme found in nature, researchers at Rensselaer Polytechnic Institute have created a nanoscale coating for surgical equipment, hospital walls, and other surfaces which safely eradicates methicillin resistant ...

Recommended for you

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.