Dynamics of crucial protein 'switch' revealed

May 17, 2011

Researchers at the University of Texas Medical Branch at Galveston and the University of California-San Diego School of Medicine have published a study that offers a new understanding of a protein critical to physiological processes involved in major diseases such as diabetes and cancer. This work could help scientists design drugs to battle these disorders.

The article was deemed a "Paper of the Week" by and will be on the cover of the . It is scheduled for publication May 20 and now available online.

"This study applied a powerful protein structural analysis approach to investigate how a called cAMP turns on one of its protein switches, Epac2," said principal investigator Xiaodong Cheng, professor in the Department of Pharmacology and Toxicology and member of the Sealy Center for and Molecular Biophysics at UTMB.

The cAMP molecule controls many physiological processes, ranging from learning and memory in the brain and contractility and relaxation in the heart to in the pancreas. cAMP exerts its action in cells by binding to and switching on specific , which, when activated by cAMP, turn on additional signaling pathways.

Errors in cell signaling are responsible for diseases such as diabetes, cancer and heart failure. Understanding cAMP-mediated cell signaling, in which Epac2 is a major player, likely will facilitate the development of new therapeutic strategies specifically targeting the cAMP-Epac2 signaling components, according to the researchers.

The project involved an ongoing collaboration between Cheng's research group at UTMB, experts in the study of cAMP signaling, and UCSD professor of medicine Virgil Woods Jr. and colleagues at UCSD, pioneers in the development and application of hydrogen/deuterium exchange mass spectrometry (DXMS) technology. Compared with other techniques, DXMS is especially good at studying the structural motion of proteins.

Using this novel approach, the investigators were able to reveal, in fine detail, that cAMP interacts with its two known binding sites on Epac2 in a sequential fashion and that binding of cAMP changes the shape of the protein in a very specific way – switching on its activity by exposing further signaling interaction sites on Epac2.

"DXMS analysis has proved to be an amazingly powerful approach, alone or in combination with other techniques, in figuring out how proteins work as molecular machines, changing their shapes – or morphing – in the normal course of their function," said Woods. "This will be of great use in the identification and development of therapeutic drugs that target these protein motions."

Explore further: Engineering a protein to prevent brain damage from toxic agents

Related Stories

Study reveals the regulatory mechanism of key enzyme

Sep 20, 2007

Research conducted at the University of California, San Diego (UCSD) School of Medicine has shed new light on the structure and function of one of the key proteins in all mammalian cells, protein kinase A ...

New discovery a step towards better diabetes treatment

Jul 01, 2008

In today's issue of the prestigious journal Cell Metabolism Uppsala scientists are presenting new findings that shed light on the processes that determine the release of the blood sugar-lowering hormone insulin. The discov ...

Chemists get grip on slippery lipids

Aug 30, 2007

The ability of the body's cells to correctly receive and convey signals is crucial to good health. Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are ...

Recommended for you

Free pores for molecule transport

5 hours ago

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many ...

User comments : 0