Drought tolerance in crops: Shutting down the plant's growth inhibition under mild stress

May 11, 2011

VIB/UGent researchers have unveiled a mechanism that can be used to develop crop varieties resistant to mild droughts. For years, improving drought tolerance has been a major aim of academic and industrial research, thereby focusing on effects of extreme drought stress. However, translating this research to the field has proven to be problematic. In a set of papers in Nature Biotechnology and the Plant Cell, the team of Dirk Inzé at the VIB Department of Plant Systems Biology, UGent now shows that the focus should be on mild drought stress instead. It turns out that under non-lethal stress conditions plants inhibit growth more than absolutely necessary, opening new opportunities for yield improvement.

"By applying this knowledge to the selection of new , unnecessary yield losses through stress can be avoided, resulting in higher productivity," Dirk Inzé from VIB-UGent said.

Only recently the World Bank warned that the world is facing a devastating food price crisis, with yield losses due to weather events being named one of the components of this complex problem. Producing more food on limited arable land, considering the increasing scarcity of water and unpredictability of the weather due to global warming, will be one of the major challenges for this century. One way to increase crop productivity is targeting , which is currently the main factor decreasing actual yields. Research in this area however so far largely failed to result in crops that perform better in drought conditions.

Much of this research has focused on improved plant survival under very severe drought. However, as shown by Aleksandra Skirycz and Korneel Vandenbroucke, plants that are more likely to survive these extreme conditions do not grow better under more mild drought conditions. This is important as in the field drought rarely is severe enough to kill plants, but rather affects their growth. The paper, published in , also shows that plants actively choose to grow slower when water gets limiting, although they have enough resources to keep growing.

In a follow-up study early leaf growth, entirely driven by cell division, was chosen as a model to unravel the mechanisms underlying this active growth inhibition. Aleksandra Skirycz and Hannes Claeys showed that the plant hormone ethylene shuts down leaf growth very fast after the plant senses limited water availability. If the stress is only temporary, growth can resume nonetheless. This research opens up new approaches to develop crop varieties that keep on growing during mild and temporary spells of drought that occur in the field, avoiding unnecessary yield losses and thus resulting in higher crop productivity.

Explore further: Sowing a future for peas

More information: Survival and growth of Arabidopsis plants given limited water are not equal, Aleksandra Skirycz, Korneel Vandenbroucke, et al, Nature Biotechnology, doi:10.1038/nbt.1800

Pause-and-stop – the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling, Aleksandra Skirycz, Hannes Claeys, et al, Plant Cell, in press

Related Stories

Sowing a future for peas

September 16, 2008

New research from the John Innes Centre and the Central Science Laboratory could help breeders to develop pea varieties able to withstand drought stress and climate change. The research also shows that the composition of ...

Researchers create drought conditions to unearth solutions

July 31, 2009

Droughts have devastating effects on farmers. In most of the world, droughts are the leading cause of crop failure. Droughts increase consumer costs, kill livestock, reduce crop yields, and trigger wildfires and dust storms, ...

Gene helps plants use less water without biomass loss

January 11, 2011

(PhysOrg.com) -- Purdue University researchers have found a genetic mutation that allows a plant to better endure drought without losing biomass, a discovery that could reduce the amount of water required for growing plants ...

Recommended for you

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Reprogramming the oocyte

August 26, 2015

(Phys.org)—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.