Defect in graphene may present bouquet of possibilities

May 25, 2011
Flower-like defects in graphene can occur during the fabrication process. The NIST team captured images of one of the defects (figures a and c) using a scanning tunneling microscope. A simulated image from their computer models (figure b) shows excellent agreement.Credit: Cockayne,Stroscio/NIST.

(PhysOrg.com) -- A class of decorative, flower-like defects in the nanomaterial graphene could have potentially important effects on the material's already unique electrical and mechanical properties, according to researchers at the National Institute of Standards and Technology (NIST) and Georgia Tech. In a new paper, the team for the first time describes a family of seven defects that could occur naturally or be induced to occur in graphene, one of which already has been observed.

Graphene is renowned for its strength and , both of which are a result of its structure. For the most part, is a featureless plane of arranged in a .

According to NIST Fellow Joseph Stroscio, defects can appear due to the movement of the carbon atoms at when producing graphene by heating under ultrahigh vacuum. The easiest, i.e. requiring the least amount of energy, rearrangements graphene can make are to switch from six-member carbon rings to rings containing five or seven atoms, which keeps all the carbon atoms happy with no unsatisfied bonds. The NIST researchers have discovered that stringing five and seven member rings together in closed loops creates a new type of defect or grain boundary loop in the honeycomb lattice.

According to NIST researcher Eric Cockayne, the fabrication process plays a big role in creating these defects.

"As the graphene forms under high heat, sections of the lattice can come loose and rotate," Cockayne says. "As the graphene cools, these rotated sections link back up with the lattice, but in an irregular way. It's almost as if patches of the graphene were cut out with scissors, turned clockwise, and made to fit back into the same place, only it really doesn't fit, which is why we get these flowers."

The exceedingly rigid lattice already is stronger than steel, but the defects might allow it a little flexibility, making it even more resilient to tearing or fracturing.

With more experimentation, Cockayne says, researchers should be able to correlate the appearance of defects with variations in growth conditions, which should make it possible to either avoid defects entirely or produce them at will.

Moreover, while the flower defect is composed of six pairs of five- and seven-atom rings, Cockayne and the NIST team's modeling of graphene's atomic structure suggests there might be a veritable bouquet of flower-like configurations. These configurations—seven in all—would each possess their own unique mechanical and electrical properties.

Explore further: Engineers discover new method to determine surface properties at the nanoscale

More information: E. Cockayne, et al. Grain boundary loops in graphene. Physical Review B. 83, 195425 (2011). DOI: 10.1103/PhysRevB.83.195425

Related Stories

Graphene's strength lies in its defects

Nov 11, 2010

The website of the Nobel Prize shows a cat resting in a graphene hammock. Although fictitious, the image captures the excitement around graphene, which, at one atom thick, is the among the thinnest and strongest ...

Graphene grains make atom-thick patchwork 'quilts'

Jan 05, 2011

(PhysOrg.com) -- A quick look at new Cornell research hints at colorful patchwork quilts, but they are actually pictures of graphene -- one atom-thick sheets of carbon stitched together at tilted interfaces. ...

Seeing Moire in Graphene

Apr 27, 2010

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology and the Georgia Institute of Technology have demonstrated that atomic scale moiré patterns, an interference pattern ...

Damaging graphene to create a band gap

Nov 22, 2010

(PhysOrg.com) -- "Graphene offers a lot of interesting potential applications for nanoelectronics," Florian Banhart tells PhysOrg.com, "but there is no band gap. This is a well-known problem. Without the band gap, switch ...

Recommended for you

Cooling with the coldest matter in the world

4 hours ago

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

4 hours ago

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

New 2-D quantum materials for nanoelectronics

Nov 21, 2014

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

spectator
5 / 5 (1) May 25, 2011
Wonder if they've tried making a graphene Moebius Strip?
that_guy
5 / 5 (1) May 25, 2011
This could have important effects on graphene's properties...we just don't know what they are yet.

That's what the article is saying to me. I think among us science enthusiasts, it's like having a little cream filled pastry...and nothing more. I'm hungry for more info.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.