Understanding a bacterial immune system one step at a time

May 17, 2011

Researchers at the University of Alberta have taken an important step in understanding an immune system of bacteria, a finding that could have implications for medical care and both the pharmaceutical and dairy industries.

In research published in the high impact journal Nature Structural & Molecular Biology, Andrew MacMillan and co-workers in his lab have described the first step of the immune response of bacterial cells. Scientists had previously found that a bacterial virus, called a bacteriophage, attacks a bacterial cell by injecting its DNA in to the cell. MacMillan's lab discovered the mechanism by which bacterial RNA is cut into pieces by a specific protein; these pieces then target the invading virus' DNA.

"We are starting at the beginning because we want to understand how this works and how we can use this to basically control bacterial growth," said Matt Schellenberg, a post-doctoral fellow in the MacMillan lab in the department of biochemistry in the Faculty of Medicine & Dentistry. This system could be beneficial for bacteria to fight off invasion of viruses. Alternatively, medical professionals could use knowledge of this system to help fight a human bacterial infection.

According to MacMillan they used a technique called X-ray crystallography to produce high-resolution pictures of a key step in the bacteria's immune response — the production of the targeting RNAs.

"Bacteria have evolved this system to protect themselves against infection," said MacMillan.

As they unfold the mystery of the bacteria cells , which is named the CRISPR system, there are implications for a variety of industrial practices involving fermentation. Everything from cheese and yogurt production to the synthesis of complex pharmaceuticals relies on large scale bacterial fermentation which is at risk of bacteriophage infection with expensive consequences – losing the batch. The labs ongoing work could help these industries boost the immune systems of the "good" .

The next step for the lab is to uncover the mechanism by which virus' DNA is destroyed.

"We want to use what we've learned so far to examine the actual targeting mechanism," says Macmillan. "This is a complex pathway and there's a lot of exciting biology to still uncover."

Explore further: Sugar mimics guide stem cells toward neural fate

Related Stories

Researchers unlock the secret of bacteria's immune system

Nov 04, 2010

A team of Université Laval and Danisco researchers has just unlocked the secret of bacteria's immune system. The details of the discovery, which may eventually make it possible to prevent certain bacteria from developing ...

Flu jab for bacteria

Mar 31, 2010

Viruses can wreak havoc on bacteria as well as humans and, just like us, bacteria have their own defence system in place, explains Professor John van der Oost, at the Society for General Microbiology's spring ...

How Bacteria Boost the Immune System

Jun 11, 2010

(PhysOrg.com) -- Scientists have long known that certain types of bacteria boost the immune system. Now, Loyola University Health System researchers have discovered how bacteria perform this essential task.

Gene against bacterial attack unravelled

Oct 28, 2008

Dutch researcher Joost Wiersinga from AMC Medical Center in Amsterdam has unravelled a genetic defense mechanism against the lethal bacteria Burkholderia pseudomallei. The research is the next step towards a vaccine against ...

Recommended for you

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

Researchers uncover secrets of internal cell fine-tuning

Jul 29, 2014

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 0