Antibody production gets confused during long-term spaceflight

May 19, 2011

The trip to Mars just got a little more difficult now that French researchers have discovered that antibodies used to fight off disease might become seriously compromised during long-term space flight. In a new report published online in the FASEB Journal, the scientists show that antibodies produced in space are less effective than those produced on terra firma. The reduced effectiveness of antibodies makes astronauts more susceptible to illness, while increasing the danger posed by bacteria and viruses likely to coexist with wayfaring astronauts.

"We hope to find efficient pharmacological and/or nutritional countermeasures to alterations of the immune system that could be useful to and to people who have weak immune systems on Earth because of infections, aging, or exposure," said Jean-Pol Frippiat, a researcher involved in the work from the Faculty of Medicine, Development and Immunogenetics at the Université Henri Poincaré-Nancy, Vandœuvre-lès-Nancy, France.

To make their discovery, Frippiat and colleagues conducted studies using three groups of amphibians. Amphibians were chosen for the work because they use the same cellular mechanisms to produce antibodies as humans do. The first group of amphibians was immunized in space, the second was immunized on Earth, and the third was not immunized at all. Comparison of the antibodies produced revealed that the quality of the generated by the group immunized in space was decreased. This suggests that spaceflight conditions alter the immune system and affect its ability to protect against infections and tumors, posing a serious risk for astronauts.

"This paper shows that somatic hypermutation occurs at a lower frequency in spaceflight and brings together yet more evidence that the is dependent on gravity," said Millie Hughes-Fulford, Ph.D., NASA Science Astronaut; Professor, Department of Biochemistry and Biophysics, UCSF; Director, Laboratory of Cell Growth, VAMC/UCSF; and editorial board member of the FASEB Journal. "Dependence on gravity should be no surprise since all of earth's jawed vertebrates developed in earth's gravity, and it would be logical to expect that some systems would require gravity for normal function."

"Outer space may be the final frontier, but this research shows that our inner space could pose the greatest threat to the success of a mission," said Gerald Weissmann, M.D., Editor-in-Chief of the . "These explorers will have to be prepared not only for the challenges of extremely hostile environments, but also those posed by microbial stowaways, even those with which we peacefully co-exist on Earth."

Explore further: Total lunar eclipse before dawn on April 4th

More information: Matthieu Bascove, Nathan Guéguinou, Bérénice Schaerlinger, Guillemette Gauquelin-Koch, and Jean-Pol Frippiat. Decrease in antibody somatic hypermutation frequency under extreme, extended spaceflight conditions. FASEB J. published ahead of print, May 18, 2011, doi: 1096/fj.11-185215

Related Stories

Recommended for you

Total lunar eclipse before dawn on April 4th

2 hours ago

An unusually brief total eclipse of the Moon will be visible before dawn this Saturday, April 4th, from western North America. The eclipse happens on Saturday evening for Australia and East Asia.

Cassini: Return to Rhea

15 hours ago

After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015.

Comet dust—planet Mercury's 'invisible paint'

22 hours ago

A team of scientists has a new explanation for the planet Mercury's dark, barely reflective surface. In a paper published in Nature Geoscience, the researchers suggest that a steady dusting of carbon from p ...

It's 'full spin ahead' for NASA soil moisture mapper

Mar 30, 2015

The 20-foot (6-meter) "golden lasso" reflector antenna atop NASA's new Soil Moisture Active Passive (SMAP) observatory is now ready to wrangle up high-resolution global soil moisture data, following the successful ...

What drives the solar cycle?

Mar 30, 2015

You can be thankful that we bask in the glow of a relatively placid star. Currently about halfway along its 10 billion year career on the Main Sequence, our sun fuses hydrogen into helium in a battle against ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
3 / 5 (1) May 19, 2011
antibodies used to fight off disease might become seriously compromised during long-term space flight"


If in fact, antibodies used to fight off disease do become seriously compromised during long-term space flight, then this important finding will impede the exploration of space.

Is the only issue that the "immune system is dependent on gravity"?

With kind regards,
Oliver K. Manuel
dogbert
not rated yet May 19, 2011
Long term exposure to weightlessness is known to compromise health in many ways. Almost any SciFi book or movie which deals with long space flight provides rotational force as a substitute for gravity.

For any long space trip, we should substitute angular acceleration for gravitational accekeration unless we develop a propulsion system which can provide a constant acceleration at a substantial fraction of the force of one earth gravity.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.