Ancient gene gives planarians a heads-up in regeneration

May 12, 2011 by Nicole Giese

A seldom-studied gene known as notum plays a key role in the planarian's regeneration decision-making process, according to Whitehead Institute scientists. Protein from this gene determines whether a head or tail will regrow at appropriate amputation sites.

Since the late 1800s, scientists have been fascinated by the planarian's amazing ability to regenerate its entire body from a small wedge of tissue. Whitehead Member Peter Reddien and former postdoctoral fellow Christian Petersen recently found that the Wnt pathway—an ancient signaling circuit that operates in all animals—inhibits regeneration at wound sites in the tiny flatworms. Intriguingly, Petersen and Reddien also noticed that wounding triggers activation of a Wnt gene at injury sites that normally regenerate a head, suggesting that something else must determine whether a wound makes a head or a tail.

In a paper published in the May 13 issue of Science, authors Christian Petersen and Peter Reddien describe how the gene notum acts at head-facing (anterior) wounds as a dimmer switch to dampen the and promote head regeneration. When the head or tail of a planarian is cut off, Wnt is activated. This Wnt activity turns on notum, but only at anterior-facing wounds. In a feedback loop, notum then turns Wnt down low enough that it can no longer prevent a head from forming. In tail-facing wounds, however, notum is not activated highly, a condition that promotes tail regrowth.

"These results suggest that animals 'decide' what needs to be regenerated, in part, by using cues that indicate axis direction with respect to the wound," says first author Petersen, who is a former postdoctoral fellow in the Reddien lab and currently Assistant Professor of Molecular Biosciences at Northwestern University. "It's telling us that for the head/tail decision, proper regeneration requires sensing and responding to tissue orientation at wound sites."

Petersen and Reddien are intrigued by this new role for notum. Like the Wnt signaling pathway, notum is highly conserved throughout species, from sea anenomes to fruit flies to humans, but little is known about its roles in biology. Because both notum and the Wnt signaling pathway are so evolutionarily ancient, their interaction in planarians may indicate a relationship that is important in other animals as well.

"We anticipate that this phenomenon of feedback inhibition regulating the levels of Wnt activity will be seen broadly in other biological contexts," says Reddien, who is also an Associate Professor of Biology at MIT and a Howard Hughes Medical Institute (HHMI) Early Career Scientist. "Wnt signaling is so broadly studied and important in biology, including for tissue repair and . notum isn't really on the map for the broad roles Wnt signaling plays in tissue repair, but this work demonstrates the central role it can play."

Explore further: Progress toward new therapies for coronary artery disease

More information: "Polarized activation of notum at wounds inhibits Wnt signaling to promote planarian head regeneration", Science, May 13, 2011.

Related Stories

Progress toward new therapies for coronary artery disease

November 8, 2007

Coronary artery disease is a leading cause of mortality in Western countries. It cannot be cured. Recent research, led by Pilar Ruiz-Lozano, Ph.D., at the Burnham Institute for Medical Research, may lead to new therapies ...

Building the blood-brain barrier

October 27, 2008

Construction of the brain's border fence is supervised by Wnt/b-catenin signaling, report Liebner et al. in The Journal of Cell Biology.

Stem cell research uncovers mechanism for type 2 diabetes

February 12, 2009

Taking clues from their stem cell research, investigators at the University of California San Diego (UC San Diego) and Burnham Institute for Medical Research (Burnham) have discovered that a signaling pathway involved in ...

Figuring out the heads or tails decision in regeneration

September 14, 2009

Amputations trigger a molecular response that determines if a head or tail will be regrown in planaria, a flatworm commonly studied for its regenerative capabilities. Until now, no molecular connection between wounding and ...

New path for colon cancer drug discovery

November 19, 2010

An old pinworm medicine is a new lead in the search for compounds that block a signaling pathway implicated in colon cancer. The findings, reported by Vanderbilt University Medical Center researchers in the November issue ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gvgoebel
not rated yet May 12, 2011
Oh, the title people were just getting TOO cutesy on this one!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.