Led by advances in chemical synthesis, scientists find natural product shows pain-killing properties

May 23, 2011

Scientists from the Florida campus of The Scripps Research Institute have for the first time accomplished a laboratory synthesis of a rare natural product isolated from the bark of a plant widely employed in traditional medicine. This advance may provide the scientific foundation to develop an effective alternative to commonly prescribed narcotic pain treatments.

The study, published May 23, 2011, in an advanced online edition of the journal Nature Chemistry, defines a chemical means to access meaningful quantities of the rare natural product conolidine. Based on data from mouse models, the study also suggests that synthetic conolidine is a potent analgesic as effective as morphine in alleviating inflammatory and acute pain, with few, if any, side effects.

In recent years, there has been significant interest in developing alternatives to opiate-based pain medications such as morphine. While widely prescribed for pain, morphine has a number of adverse side effects that range from the unpleasant to the lethal, including , chronic constipation, addiction, and breathing depression.

The rare natural product central to the study is derived from the bark of a widely grown tropical flowering plant Tabernaemontana divaricata (also known as crepe jasmine). Long part of traditional medicine in China, Thailand, and India, extract from the leaves has been used as an anti-inflammatory applied to wounds, while the root has been chewed to fight the pain of toothache. Other parts of the plant have been used to treat and cancer.

Conolidine belongs to a larger class of natural products, called C5-nor stemmadenines, members of which have been described as opioid , despite a substantial discrepancy between potent in vivo analgesic properties and low to opiate receptors. Conolidine is an exceptionally rare member of this family for which no therapeutically relevant properties had ever been described. Despite the potential value of conolidine and related C5-nor stemmadenines as leads for therapeutics, efficient methods to prepare these molecules were lacking.

"This was a classic problem in ," said Glenn Micalizio, an associate professor in the Department of Chemistry, who initiated and directed the study, "which we were able to solve effectively and efficiently¬¬—an achievement that made subsequent assessment of the potential therapeutic properties of this rare natural product possible."

Micalizio and his colleagues began working on the synthesis of the molecule after they arrived at Scripps Florida in 2008.

Testing For Potency

Once the synthesis was complete, research shifted to pharmacology for evaluation. The pharmacological assessment, performed in the laboratory of Scripps Florida Associate Professor Laura Bohn, showed that the new synthetic compound has surprisingly potent analgesic properties.

"Her pharmacological studies confirmed that while it's not an opiate, it's nearly as potent as morphine," Micalizio said.

In various models of pain, the new synthetic compound performed spectacularly, suppressing and inflammatory-derived pain, two key measures of efficacy. Not only that, but the new compound passed easily through the blood-brain barrier, and was present in the brain and blood at relatively high concentrations up to four hours after injection.

Bohn herself was surprised by the compound's potency and by the fact it so readily enters the brain.

"While the pain-relieving properties are encouraging, we are still challenged with elucidating the mechanism of action," she said. "After pursuing more than 50 probable cellular targets, we are still left without a primary mechanism."

So far, the compound has shown remarkably few, if any, side effects, but that is something of a double-edged sword.

"The lack of side effects makes it a very good candidate for development," Bohn said. "On the other hand, if there were side effects, they might provide additional clues as to how the compound works at the molecular level."

That remains a mystery. While the synthetic compound might be as effective as , it doesn't act at any of the receptors associated with opiates. In fact, it misses most of the major neurotransmitter receptors completely, suggesting it may be highly tuned towards relieving pain while not producing multiple . While still in the early stages of development, further characterizations of conolidine may suggest further development as a human therapeutic for the treatment of .

Explore further: Potential new pain killer drug developed by scientists at Leicester and Italy

More information: "Synthesis of Conolidine, a Potent Non-Opioid Analgesic for Tonic and Persistent Pain," Michael A. Tarselli et al. Nature Chemistry (2011)

Related Stories

Morphine dependency blocked by single genetic change

January 28, 2008

Morphine’s serious side effect as a pain killer – its potential to create dependency – has been almost completely eliminated in research with mice by genetically modifying a single trait on the surface of neurons. The ...

Researchers find new target to improve pain management

September 7, 2010

Researchers from Mount Sinai School of Medicine have discovered a major mechanism underlying the development of tolerance to chronic morphine treatment. The discovery may help researchers find new therapies to treat chronic ...

Recommended for you

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 23, 2011
If it is really that good, please hurry up and get a product on the market.
not rated yet May 23, 2011
I'm sure Endo Pharm isn't too happy about this, they've been ruling the Percocet and generic world for years.
Carolina, it really would be nice to see a non-narcotic that's potent. Then doctors wouldn't have to worry so much about physical addiction.
not rated yet May 23, 2011
If its that good I still bet you get a decent high out of it, would need more third party testing before its hailed as the new vicodin

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.