Finding may end a 30-year scientific debate

Apr 11, 2011
(L to R) Peter Davies, Rob Campbell and Christopher Garnham are the biochemistry researchers from Queen's University whose discovery about the precise way antifreeze proteins bind to the surface of ice crystals may end a decades-old scientific debate. Credit: Queen's University

A chance observation by a Queen's researcher might have ended a decades-old debate about the precise way antifreeze proteins (AFP) bind to the surface of ice crystals.

"We got a beautiful view of water bound to the ice-binding site on the protein," says Peter Davies, a professor in the Department of Biochemistry and a world leader in antifreeze protein research. "In a sense we got a lucky break."

AFPs are a class of proteins that bind to the surface of crystals and prevent further growth and recrystallization of ice. Fish, insects, bacteria and plants that live in sub-zero environments all rely on AFPs to survive. AFPs are also important to many industries, including ice cream and frozen yogurt production which relies on AFPs to control ice-crystal growth.

The implications of this finding reach far beyond creating low-fat, high water-content ice cream that maintains a rich, creamy texture. Having a clear idea of how AFPs bind to the surface of would allow researchers and industries to engineer strong, versatile AFPs with countless commercial applications ranging from increasing the freeze tolerance of crops to enhancing the preservation of transplant organs and tissues.

While determining the of an AFP from an Antarctic , biochemistry doctoral candidate Christopher Garnham was fortunate enough to see an exposed ice-binding site—a rare find in the field of AFP crystallography that Mr. Garnham studies.

The ice binding surface of an AFP contains both hydrophobic or 'water repelling' groups as well as hydrophilic or 'water loving' groups. Until now, the exact function of these counter-acting forces with respect to ice-binding was unknown.

While the presence of water repellent sites can appear counterintuitive on a protein that bonds with ice, Mr. Garnham and Dr. Davies are hypothesizing that the function of these water repellent sites is to force water molecules near the surface of the protein into an ice-like cage that mirrors the pattern of water molecules on the surface of the ice crystal. The water-loving sites on the protein's surface then anchor this ice-like cage to the via hydrogen bonds. Not until the ordered waters are anchored to the AFP is it able to bond to ice.

Explore further: Dead feeder cells support stem cell growth

More information: This research will be published today in the Proceedings of the National Academy of Sciences.

Related Stories

Antifreeze proteins can stop ice melt, new study finds

Mar 01, 2010

The same antifreeze proteins that keep organisms from freezing in cold environments also can prevent ice from melting at warmer temperatures, according to a new Ohio University and Queen's University study ...

Scientists isolate new antifreeze molecule in Alaska beetle

Dec 14, 2009

Scientists have identified a novel antifreeze molecule in a freeze-tolerant Alaska beetle able to survive temperatures below minus 100 degrees Fahrenheit. Unlike all previously described biological antifreezes that contain ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Beard
not rated yet Apr 12, 2011
Isn't ice formation the main obstacle for cryonics?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.