New model of whiskers provides insight into sense of touch

Apr 07, 2011

Researchers at Northwestern University have developed a model that will allow them to simulate how rats use their whiskers to sense objects around them. The model enables further research that may provide insight into the human sense of touch.

Hundreds of papers are published each year that use the rat whisker system as a model to understand and neural processing. move their whiskers rhythmically against objects to explore the environment by touch. Using only tactile information from its whiskers, a rat can determine all of an object's spatial properties, including size, shape, orientation and texture.

But there is a big missing piece that prevents a full understanding of the recorded in these studies: no one knows how to represent the "touch" of a whisker in terms of mechanical variables.

"We don't understand touch nearly as well as other senses," says Mitra Hartmann, associate professor of and at the McCormick School of Engineering and Applied Science. "We know that visual and auditory stimuli can be quantified by the intensity and frequency of light and sound, but we don't fully understand the mechanics that generate our sense of touch."

To create a model that starts to quantify these mechanics, Hartmann's team first studied the structure of the rat whisker array – the 30 whiskers arranged in a regular pattern on each side of a rat's face. By analyzing them in both two- and three-dimensional scans, they defined the relationship between the size and shape of each whisker and its placement on the face of the rat.

Using this information, the team created a model that quantifies the full shape and structure of the rat head and whisker array. The model now allows the team to simulate the rat "whisking" against different objects and to predict the full pattern of inputs into the whisker system as a rat encounters an object. The simulations can then be compared against real behavior.

The research is published online in the journal Public Library of Science Computational Biology.

Understanding the mechanics of the rat whisker system may provide a step toward understanding the human sense of touch.

"The big question our laboratory is interested in is how do animals, including humans, actively move their sensors through the environment and somehow turn that sensory data into a stable perception of the world," Hartmann says.

To determine how a rat can sense the shape of an object, Hartmann's team previously developed a light sheet to monitor the precise locations of the whiskers as they came in contact with the object. Using high-speed video, the team can also analyze how the rat moves its head to explore different shapes. These behavioral observations can then be paired with the output from the model.

These advances will provide insight into the but may also enable new technologies that could make use of the whisker system. For example, Hartmann's lab created arrays of robotic whiskers that can, in several respects, mimic the capabilities of mammalian whiskers. The researchers demonstrated that these arrays can sense information about both object shape and fluid flow.

"We show that the bending moment, or torque, at the whisker base can be used to generate three-dimensional spatial representations of the environment," Hartmann says. "We used this principle to make arrays of robotic whiskers that can replicate much of the basic mechanics of rat whiskers." The technology, she said, could be used to extract the three-dimensional features of almost any solid object.

Hartmann envisions that a better understanding of the whisker system may be useful for engineering applications in which the use of cameras is limited. But most importantly, a better understanding of the rat whisker system could translate into a better understanding of ourselves.

"Although and hands are very different, the basic neural pathways that process tactile information are in many respects similar across mammals," Hartmann says. "A better understanding of neural processing in the whisker system may provide insights into how our own brains process information."

Explore further: Orchid named after UC Riverside researcher

More information: The title of the paper is "The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact."

Related Stories

What a rat can tell us about touch

Feb 18, 2011

In her search to understand one of the most basic human senses – touch – Mitra Hartmann turns to what is becoming one of the best studied model systems in neuroscience: the whiskers of a rat. In her research, Hartmann, ...

Researchers unveil whiskered robot rat

Jun 30, 2009

A team of scientists have developed an innovative robot rat which can seek out and identify objects using its whiskers. The SCRATCHbot robot will be demonstrated this week at an international workshop looking ...

Research shows how sensory-deprived brain compensates

Apr 17, 2007

Whiskers provide a mouse with essential information to negotiate a burrow or detect movement that could signal a predator's presence. These stiff hairs relay sensory input to the brain, which shapes neuronal activity. In ...

Rat hair cells found to be true stem cells

Oct 04, 2005

Cells inside hair follicles are stem cells able to develop into the cell types needed for hair growth and follicle replacement, Swiss researchers claim.

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

3 hours ago

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

21 hours ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

23 hours ago

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

23 hours ago

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.